

Mobile Web Development

Building mobile websites, SMS and MMS messaging,
mobile payments, and automated voice call systems
with XHTML MP, WCSS, and mobile AJAX

Nirav Mehta

 BIRMINGHAM - MUMBAI

Mobile Web Development

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2008

Production Reference: 1300108

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847193-43-8

www.packtpub.com

Cover Image by Bharath Kumar (bharath.rbk@gmail.com)

Credits

Author

Nirav Mehta

Reviewer

Michael Peacock

Senior Acquisition Editor

David Barnes

Development Editor

Nikhil Bangera

Technical Editor

Ajay Shanker

Editorial Manager

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Project Coordinators

Snehal Raut

Zenab Kapasi

Indexer

Hemangini Bari

Proofreader

Chris Smith

Production Coordinators

Aparna Bhagat

Shantanu Zagade

Cover Work

Aparna Bhagat

About the Author

Nirav Mehta is renowned for his entrepreneurial ventures, his breakthrough
ideas, and his contribution to open source. Nirav leads a software development
company—Magnet Technologies—from India that specializes in Rich Internet
Applications, Web, and Mobile. Nirav believes in simplifying the most complicated
ideas and presenting them in lucid language.

Over the last ten years, Nirav has written and spoken on a variety of topics. He has
also been instrumental in localization efforts in India and training programmers to be
effective developers. He blogs at www.mehtanirav.com.

My love and thanks to my parents. It's your support and freedom
that lets me do all things I love! Thank you!

I would like to thank Mayank Sharma, for his recommendations.
Without you, the book wouldn't be possible.

Thanks to David Barnes, Packt's Acquisition Editor. Your comments,
guidance, and blog have inspired me a lot.

I would like to thank Micheal Peacock and the team at Packt—Nikhil
Bangera, Patricia Weir, Snehal Raut, Ajay Shanker, Sagara Naik, and
everyone else. You guys are amazing! I will always remember how
hard you worked to get the book out near my wedding, and the
superb suggestions throughout.

Of course, the team at Magnet! Ashok, Vishal, and Harshad—you
have been with me in all the ups and downs, I cherish your
partnership. All Magneteers, thank you for being a great team!

I also appreciate the readers of this book! I believe you are up to
something big, and hope my work helps you achieve it.

And finally, my wonderful wife, Nikita. I stole time from you for the
book. Thanks for your constant love, encouragement, and reminders!

About the Reviewer

Michael Peacock is a web developer and senior partner of Peacock, Carter &
Associates (http://www.peacockcarter.co.uk) a web design and development
business. Michael loves building websites and web applications, and when he isn't,
likes to read, watch films, and occasionally take part in amateur dramatics.

Table of Contents
Preface	 1
Chapter 1: Getting Mobile	 9

What is Mobile Web?	 10
Mobile Web Integration is Connecting the Two!	 10

The First Step—Understanding Mobile Devices	 11
Mobile Phones	 11
PDAs	 13
Other Devices	 13

Mobile Data Usage is Exploding	 13
Mobile Usage Around the World is Not the Same	 14

Mobiles and Desktops	 15
People Use Their Mobiles Differently Than Their Desktops	 15

How Would You Do This Using Your Mobile?	 16
It's Not All Rosy—Mobile Devices have Limitations	 18

Advantages of Mobile Web	 18
But There are Many Ways to Do Mobile Web Development!	 19

What About WAP?	 19
Bringing Order with Standards and Guidelines	 20

Adaptation is Better, but LCD is Easier	 21
Summary	 21

Chapter 2: Starting Your Mobile Site	 23
Pizza On The Run and the Mobile Web	 23
Different Options for Going Mobile	 24

Do Nothing	 25
When to Use This Approach	 25
When to Avoid This Approach	 25

Remove Formatting	 25
When to Use This Approach	 26
When to Avoid This Approach	 26

Table of Contents

[ii]

CSS-Based Design	 26
When to Use This Approach	 27
When to Avoid This Approach	 27

Mobile Site	 27
When to Use This Approach	 27
When to Avoid This Approach	 28

Mobile Navigation and Information Architecture	 28
Step-By-Step: Planning the Structure of Your Mobile Site	 29
Handy Tips in Structuring Your Mobile Site	 31

Setting Up the Development Environment	 31
Hosting Your Mobile Site is Trivial	 35

POTR Mobile Homepage	 35
Making a Call is as Simple as Email	 37
Understanding the Homepage	 37

Document Structure	 37
Fundamentals of XHTML MP	 38

Before Writing Further Code, Let's Learn Some Grammar	 38
Most Common HTML Elements are Supported	 40
XHTML MP Does Not Support Many WML Features	 41

Summary	 42
Chapter 3: Building Pizza On The Run	 43

Luigi's Pizza On The Run	 43
Designing Layouts for the Mobile Web	 44

Mobile Screen Sizes	 44
Colors, Images, Page Sizes, and More	 45
To Mobile or Not to Mobile?	 45
Web Layouts Don't Work on Mobile Devices	 46

Using Wireless CSS as the Silver Bullet, Almost!	 47
Creating the Database and Code Architecture for POTR	 51

Classes for POTR	 51
Database Schema	 52
Coding Framework	 53

Redoing the POTR Homepage	 54
Form Elements Don't Look the Same Across Browsers	 56
Form Processing Does not Change!	 58

Handling Sessions and User Login	 59
Taking Orders	 61
Constraining User Input with WCSS	 64
Single-Step Registration and Order Placement on POTR	 66
Special Effects with CSS	 69

Table of Contents

[iii]

Luigi's Pizza On The Run is Live!	 70
Summary	 70

Chapter 4: Adapting to User Devices	 73
What is Adaptation?	 73

Do I Need Adaptation?	 74
Can't I just Use Common Capabilities and Ignore the Rest?	 74
How to Determine the LCD?	 74
OK, So How do I Adapt?	 75

Fancy Pizza Selection	 76
What are Those <wall:*> Tags?	 77
Let's Make Sense of This Code!	 78

Can I Use All XHTML Tags?	 79
Will This Work Well for WML?	 80

Device Detection and Capabilities	 80
XML Processing can Bog Down My Server, is There Something Easier?	 81
What About W3C's DIAL?	 82

Other Useful Tools for Adaptation	 82
Dynamically Resizing Images	 82
Quick and Easy Way to Make Your Blog Mobile	 82
MyMobileWeb: Going the Semantic Way	 83
HAWHAW: As Simple as a Laugh?	 84

Summary	 84
Chapter 5: Developing Standards- Compliant Sites	 85

Running the ready.mobi Test	 85
Time for Action: Test Your Site's Mobile Readiness with the ready.mobi Test	 86

Creating the Structure, Design, Markup, and Navigation for
Best User Experience	 89

Mobile Web Development Checklists	 90
Strategy	 90
Testing Setup	 90
Structure and Page Information	 91
Design and CSS	 91
Images	 92
Navigation and Links	 92
Content	 92
Markup	 93
User Input	 93
Objects, Security, Caching, Etc.	 93

Best Practices should be Upgraded!	 93
Most Good Styles of Design and Software will Work
on the Mobile Web Too	 94

Table of Contents

[iv]

Collecting User Behavior Data	 94
Time for Action: Implementing User Tracking	 94

How is All the Data Tracked?	 97
Covering Problem Areas	 97
Tapping into the Device Data	 97
Making it Easier to Ask for Help	 97

Summary	 98
Chapter 6: Sending Text Messages	 99

Updating Order Status	 99
Time for Action: Updating Order Status	 100

Sending SMS Notifications	 102
Getting Started with a Gateway	 102

Time for Action: Registering on Clickatell	 102
Integrating with Clickatell	 103

Time for Action: Integrating with Clickatell to Send SMS Notifications	 104
What Just Happened?	 108

So What Happens at the Gateway?	 109
Finding Message Delivery Status	 110

Time for Action: Tracking Queued Messages	 110
Querying for Message Status	 112
Lessen the Load with Status Update Callbacks	 112

Before You Decide on a Gateway	 113
Sending SMS from Your Own Computer	 114
Sending Bulk Messages	 115
Summary	 116

Chapter 7: Adding Spice to Messages: MMS	 117
Creating a "Special Offers" MMS message	 118

Time for Action: Compose an MMS message using Nokia Tools	 118
What Just Happened: Understanding MMS Structure	 124

Controlling Message Presentation	 127
Understanding SMIL Elements	 128

Modules and Elements of SMIL 2.1 Mobile Profile	 128
More SMIL: Applying Transitions	 129

Sending Multimedia Messages through Our Gateway	 131
Time for Action: Sending MMS Messages via Clickatell	 131
How is an MMS Message Sent?	 132
MMS Gateways do Good Work	 133

Receiving Photos from Customers via MMS	 134
Time for Action: Decoding an MMS Message	 134
What Just Happened: Decoding the MMS Message	 136

MMS's Potential is Yet to Be Exploited!	 136
Summary	 137

Table of Contents

[�]

Chapter 8: Making Money via Mobile Devices	 139
Getting Money through PayPal	 139

Time for Action: Setting Up the PayPal Account for Mobile Payments	 140
Why This Configuration?	 140

Mobile Checkout is a Three-Step Flow	 141
Time for Action: Integrating PayPal Mobile Checkout with POTR	 141
How Does This Work?	 145

Evaluating Mobile Payment Methods	 146
Premium SMS	 146
WAP-Based Credit Card Payment	 147
Direct Billing	 148
Proximity Payment	 148

Security Concerns in Mobile Payments	 149
Using SMS in Mobile Payment	 150
Receiving Text Messages	 151

Getting a Short Code	 151
Receiving Messages via Clickatell	 152
Sending Messages That Can Be Replied To	 153

Making it Easier—Payment Gateways Help get More Money!	 154
Summary	 155

Chapter 9: Interactive Voice	 157
First, Some Basics	 158

Busting Some Jargon	 158
IVR Infrastructure: Hosted or Owned?	 159

Time for Action: Setting Up an Interactive Voice Response Platform	 159
Designing the Call Flow of Our Application	 161
Creating an Application to Play Audio	 162

Time for Action: Creating an Application and Welcoming Callers	 162
Making Choices by Key Presses	 164

Time for Action: Prompting the User for Next Action	 164
Transferring Calls in Voice XML	 167

Handling Errors	 167
Adding Global Navigation with the <link> Tag	 169

Recognizing Voice	 169
Storing Variables at the Application Level	 170
Detecting the Caller's Phone Number	 171

Time for Action: Let's Put It All Together	 171
Writing Complex Grammar Rules	 174

Time for Action: Writing Complex Grammars	 174
Selecting the Topping and Quantity	 177
Confirming and Submitting an Order	 177

Time for Action: Confirming and Submitting an Order	 177
How Did It Turn It All Around?	 179

Summary	 180

Table of Contents

[vi]

Chapter 10: Mobile AJAX	 181
Getting Pizza Recipes via AJAX	 182

Devising our AJAX Strategy	 182
Time for Action: Showing Recipes	 184
What's Going on in the Background?	 191
What if Your Device Does Not Support AJAX?	 192

Adding Navigation	 193
Time for Action: Adding Navigation for Recipes	 193

Adding Comments	 194
Time for Action: Submitting Comments	 195
What's the Deal with All that Form Code?	 197

I Want More AJAX on My Mobile!	 198
Understanding iPhone Application Development	 198
More Ways to Build Rich Mobile Apps	 200
Summary	 201

Chapter 11: Mobile Web 3.0?	 203
Mobile Web Applications are Growing Faster than Humans	 204
Mobile Widgets and Mobile Browsers	 206

The Advantages of Mobile Widgets	 207
Mobile Browsers Get Better	 207

Do We Need Server-Side Adaptation?	 208
Connectivity—Mobile Networks and Occasionally Connected Devices	 208

Occasionally Connected Computing	 209
Androids will Invade Your Mobile Space Soon!	 211

Getting Inside the Android	 212
Other Players	 213

Is the Mobile the Next Computer?	 213
How will People Use Their Mobile Computer?	 214
Mobile is Not Limited to Phones	 214

Some More Analysis!	 214
Location-Based Services will Mushroom	 214
SMS Messaging will Continue Its Hold	 215
Mobile Payments will Happen, Albeit Slowly	 215
You will Build Some Kickass Mobile Web Applications	 215

Resources for Mobile Web Integration	 215
Summary	 216

Index	 217

Preface
As more users access the Web from their phones and other handhelds, web
developers need to learn techniques for targeting these new devices. Sites such as
Twitter, Facebook, and Google target mobiles with their services and products.
Companies use mobile services to provide staff access to their applications while
away from a computer.

This book is a complete, practical guide to writing mobile websites and applications.
You will learn how to create mobile-friendly websites, adapt your content to the
capabilities of different devices, save bandwidth with compression, and create
server-side logic that integrates with a mobile front end. You will also see other
methods for integrating your web application with mobile technology: sending and
receiving MMS and SMS messages, accepting mobile payments, and working with
voice calls to provide spoken interaction.

The book illustrates every technique with practical examples, showing how to use
these development methods in the real world. Along the way we show how an
example pizza delivery business can use these methods to open up to the mobile web.

Whether you want to provide customers and users of your public website with new
ways to access your services, or build applications so that staff can stay up to date
while on the road, this book will show you all you need to build a powerful
mobile presence.

Preface

[�]

What This Book Covers
Chapter 1 introduces the Mobile Web and we'll see why mobile web is the next
big thing.

Chapter 2 is our first look at the example site we'll be building in the book: "Pizza on
the Run" (POTR). Specifically, we look at: picking the best method to deliver your
site to mobile browsers, designing navigation and information architecture, setting
up a development environment, learning XHTML Mobile Profile—the presentation
language for mobile applications, and developing Pizza On The Run's mobile
site homepage.

Chapter 3 looks at: designing layouts for the mobile web, using Wireless CSS in
design, being aware of differences in mobile browsers, creating the database and
code architecture for our example site (POTR), using forms on the mobile web,
handling user authentication, testing our work in simulators, constraining user input
with Wireless CSS, and applying special effects using Wireless CSS.

Chapter 4 covers: understanding the Lowest Common Denominator method,
finding and comparing features of different mobile devices, deciding to adapt or
not, adapting and progressively enhancing the POTR application using Wireless
Abstraction Library, detecting device capabilities, evaluating tools that can aid in
adaptation, and moving your blog to mobile.

Chapter 5 specifically looks at: running a ready.mobi test on your site, creating the
structure, design, markup, and navigation for best user experience, and collecting
user behavior data to keep enhancing the site.

Chapter 6 looks at sending text messages, and in the process covers the fundamentals
of using third-party services for messaging. We specifically take a look at: updating
order status for POTR, selecting an SMS gateway provider and setting up an account,
sending text messages using the gateway's API, understanding how an SMS message
is delivered, getting delivery status updates, setting up our own SMS gateway, and
sending bulk messages.

Chapter 7 covers: creating Multimedia Messages for special offers at POTR,
controlling message presentation, sending Multimedia Messages through our
gateway, and receiving photos from customers via MMS.

Chapter 8 explores and set up a mobile payment system for POTR. Specifically,
we look at: getting money through PayPal, evaluating mobile payment
methods—their pros and cons, security concerns in mobile payments, using SMS
in mobile payment, Premium SMS and Short Codes, and receiving Text Messages
via a short code.

Preface

[�]

Chapter 9 looks at: setting up an interactive voice response platform, playing
pre-recorded audio and text to speech, accepting keypad inputs, accepting voice
input and doing speech recognition, performing dynamic calculations on input,
and integrating with server-side scripting.

Chapter 10 covers how to use AJAX on mobile platforms. We specifically look at:
getting pizza recipes via AJAX, enabling AJAX in forms, understanding iPhone
application development, and more about building rich mobile apps.

Chapter 11 looks at: trends in mobile web applications, mobile widgets and
developments of the browser, connectivity—mobile networks, occasionally
connected devices, open Handset Alliance and Google's Android system, and
resources to keep abreast of the mobile scene.

What You Need for This Book
You do not need any specific software/hardware to benefit from the book. But:

To run the examples, you will need a PHP/MySQL setup.
You will need a Windows system to install mobile emulators and
IVR software.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code will be set as follows:

CREATE TABLE `trackingdata` (
 `id` int(10) unsigned NOT NULL auto_increment,
 `userId` int(10) unsigned NOT NULL,
 `sessionId` varchar(40) NOT NULL,

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

'".getenv('HTTP_REFERER')."', '".getenv('HTTP_USER_AGENT')."',
'".serialize($_REQUEST)."')";
 $GLOBALS['db']->Query($query);
 $_SESSION['tdId'] = $GLOBALS['db']->GetCurrentId();

•

•

Preface

[�]

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

This book is dedicated to
my parents—Vinod & Nayna

and my wife—Nikita;
for their love and support

Getting Mobile
When Evan Williams, founder of Blogger and Odeo, had to pick up what he would
do next to revolutionize the Web, he decided to go mobile. Evan returned the VC
money to focus on Twitter—a service that allows keeping in touch with friends via
alerts to and from your mobile phone (and instant messenger and web)! After six
months of launch, Twitter had reached 50,000 active users. The number doubled to
100,000 in just one month after Twitter won the Best Blog award at South By South
West conference.

Evan mentioned "Best Blog" was a weird category for Twitter, as Twitter is not a
blog. But Twitter's growth has been phenomenal. As Ewan Spence of The Podcast
Network puts it, "Twitter has got Americans texting!" And that included a US
Presidential candidate!

The way it works is very simple. Whenever you want to update your friends about
what you are doing, just pick up your phone, type an SMS, and send it to a special
shortcode number. Twitter broadcasts it to all your friends and posts it on your
Twitter page. Your friends will know what you are up to, whether they are online or
on the move.

If you have a lot of friends, you may love getting text messages about what they
are eating and what their cat is doing. Or you may hate the SMS beeps at all odd
hours. But it is a fact that Twitter is a big-time success. And it shows where things
are moving.

Things are moving mobile!

Broadtexter allows music bands to broadcast messages to their fans via SMS. With a
Broadtexter account, the band get a simple widget they can place on their site. Fans
register using this widget. When the band are doing a show, they go to Broadtexter,
select the area of the show, and send out an SMS broadcast to all those fans with the
venue and time of the show. Unlike the conventional thinking that people would
not like such updates, the idea has been a hit. Many bands had people coming in and

Getting Mobile

[10]

thanking them for the SMS! They weren't doing anything else that evening, and the
last minute text message excited them to get to the show. The band not only sold
more tickets but also got a new way to keep in touch with fans.

Imagine Twitter or Broadtexter without the mobile connectivity. We will not go
to a friend's blog to read short updates on what she or he is doing. We will forget
the reminder a band had emailed two days ago about today's event. Twitter and
Broadtexter are successful primarily because they allow updates over mobile devices
in a quick and convenient manner.

And it is not only text messages. Google has a full blown mobile site. You can access
it using a mobile phone or a PDA, and perform a search just like you would do from
a desktop. You can navigate the results using the limited keyboard you have on the
device and still get the job done.

Web applications are now reaching where their users are. Not just in front of their
desktop, but also when they are traveling, or when they are driving looking for a
good restaurant in the neighborhood.

Welcome to the world of Mobile Web!

What is Mobile Web?
Simply put, mobile web refers to the Web being accessed from mobile devices like
cell phones and PDAs. The reach and capabilities of mobile devices has grown
phenomenally over the last three years. Almost all mobile phones now can access the
Internet in some or the other way. All PDAs have a tiny web browser built in. People
are getting used to accessing information from the Web over their phones. Many use
PDAs to check their emails and manage other bits of information. Early adopters
of technology have already been blogging from their mobiles and viewing online
photos and videos while they are traveling. Mobile web is all of that. Any website
accessed from a mobile device is mobile web—whether it's been tailored to work on
a mobile or not!

Mobile Web Integration is Connecting the Two!
We use mobile phones mainly to communicate with people—either voice or text.
PDAs so far have been used for managing schedules and contacts, apart from some
occasional office productivity work and games! The Web on the other hand has
evolved greatly over the years. From the early days of simple HTML markup
linking a few pages, to the Web 2.0 collaborative ecosystem, things have matured
a lot. If you come to think of it, we can't expect a world without the Web or mobile
devices today!

Chapter 1

[11]

You may have done a lot of web programming and might be wondering how you
can develop for mobile devices. Or you may want to add mobile features to your
existing site. This book will teach you all that. Reading through the book, you can
port your website to mobile devices. You can AJAXify your mobile site and integrate
SMS or MMS messaging. You will even be able to accept payments via mobile and
use intelligent interactive voice-response systems. With this book, you can bring web
applications to mobile devices, integrating them with mobile-specific features!

By the way, we are not going to talk about mobile application development. We are
not even going to talk about web application development. You don't need any J2ME
knowledge or C++. All we assume is that you have a basic knowledge of HTML and
some server-side programming technology. We will use PHP for the examples in
the book, but you can easily customize them to any other language. We will explain
different mobile technologies, so it's alright if you don't know them already!

The First Step—Understanding Mobile
Devices
Go to any electronics store, and you will have hundreds of mobile phones to choose
from. The shelf life of a mobile phone model is less than 18 months now. People
change their phones every two years, and companies push new models every month.
Mobile phones are not the only mobile devices! With pocket-sized computing
devices—PDAs, micro notebooks, and even handheld notebooks—the options
are bewildering. We will include both mobile phones and pocket-sized devices
whenever we refer to mobile devices. Let us discuss some specific features and
limitations of these mobile devices.

Mobile Phones
Mobile phones are the largest segment of mobile devices. Mobile phones typically
come in "candy bar", "sliding box", or "clam shell" form. You surely have seen a
variety of them. Mobile phones have a specially designed processor and run some
kind of operating system. Symbian and Windows Mobile are widely used operating
systems on mobile phones, and many phone manufacturers develop their own
systems as well.

The most important use of a mobile phone is to talk. Then, you could use it to take
photos, send messages, and play music. In the last three years, mobile phones have
seen a number of innovations. All this has resulted in a vast variety of devices in the
market—from simple feature phones to smart phones.

Getting Mobile

[12]

Color phones are a norm now, yet there are millions of monochrome devices around.
The screen size, resolution, and color density varies greatly. You will see screen sizes
from 120x120 to 320x240 and more.

The standard input mechanism for mobile phones is a 12-key pad with additional
function keys. Some phones have a joystick that can be used for navigation.
Wider-screen models sometimes feature a stylus-based input system or an
on-screen keyboard. Phones like the iPhone have touch-sensitive panels, and some
have accessories that you can attach to get a full QWERTY keyboard.

Mobile phones come in sizes that fit your pocket—some are incredibly small and
some as big as a pencil box. Sleek and slim designs are in vogue—especially because
a mobile phone is also a style statement. Having the latest model is a status symbol
in many markets!

Referred to as SMS (Short Message Service, Message, or Text depending on the part
of the world you are from), these 160 character text messages have revolutionized
mobile usage. SMS is now used for all sorts of business and entertainment purposes.
MMS (Multimedia Message Service) allows you to send pictures, sounds, and full
videos to others just as you send emails.

But if there is one thing that changed mobile phones from communication devices
to consumer goods, it is the camera. Starting with VGA quality images (640x480
pixels), today's mobile phones are equipped with five-megapixel cameras, flash,
and other tools to add effects to the photographs. Millions have turned into amateur
photographers just because of the camera in their phone. The Internet is full of funny
and dirty video clips taken from mobile phones.

Not everyone could afford an iPod. So, mobile companies started adding MP3
support to their phones. Use of MP3 ringtones and swapping music files has become
a norm. Listening to radio using the phone has shot up too.

And that's not all. As these phones are little computers themselves, you can develop
applications that extend their functionality or add new features. Application
development over Symbian, J2ME, BREW, or Palm is very popular. Each phone comes
with a set of applications and utilities, and there are thousands of developers around
the world who develop games and utility applications that run on mobile phones.
Google's Android allows you to even replace the built-in applications—giving you full
control over your device.

Chapter 1

[13]

Most of the mobile phones today come with some sort of a web browser. Opera Mini
is the most popular browser but there are many more. Different browsers support
different features, and break some! Testing across browsers is one of the biggest
challenges in mobile web development. The situation is much worse than desktop
browsers, and we will see more on this in the coming chapters. The connectivity to
the Web depends on the carrier you are on. You may be on GPRS, 3G, Bluetooth,
WiFi, or anything in between.

PDAs
Another class of mobile devices is PDAs. Personal Digital Assistants have been
around for quite some time and have evolved over this period. They contain
many business and productivity applications—email, office productivity, and
custom-built software. Typically, they have a QWERTY keyboard—either in the
device or onscreen. Phone functionality is an add-on for PDAs, and most consumer
PDAs are smart phones now. These handheld devices are merging with phones now,
and are very popular with business users.

Other Devices
There are other devices that are used in a mobile fashion. Many embedded devices
use mobile technology for communication. Micro notebooks, watches, or cars can
be classified here as well. Gaming consoles are also used as web clients these days.
We expect many hybrid devices to come up in the next few years leveraging higher
computing power and mobile communication technology.

What do people do with all these devices? Understandably, it's much more than
voice! Let's see the usage patterns of mobile devices.

Mobile Data Usage is Exploding
Mobiles are used for voice communication generally, but the usage of mobile devices
for data communications is growing rapidly. Data usage includes simple things like
SMS to mobile web, video and TV on mobile, and other innovations. For mobile
companies, this is billions of dollars of additional revenues and for users, these are
value-added services. This growth is seen across the globe. Japan, the USA, and
China are leading the pack in data usage, but other developed and developing
nations are not far behind.

Getting Mobile

[14]

According to a Chetan Sharma's consulting report (http://www.chetansharma.
com/MobilePredictions2008.htm), Japan and Korea are the benchmarks in terms
of mobile data usage, but the USA will soon be the largest revenue-generating
market. Brazil, the Netherlands, and Czech regions are already doing more than 30%
of their revenues from mobile data. Though a large part of this money is from SMS,
other services are gaining larger shares. The USA has 50-60% data revenues from
non-SMS services, while Japan and Korea have a higher 70-75%. This trend suggests
there is a huge use already of mobile web applications, and it is going to continue not
only in these regions but other parts of the world too.

Another interesting thing is that the western European region reports 100% of the
population has mobiles—though part of this is due to double phones with single
persons and dual reporting. The USA has more than 75% reach. Mobile subscribers
around the world have already reached 3 billion, and China and India together are
adding close to 13 million every month.

At the same time, the speed of wireless communications is increasing worldwide.
Many countries already have 3G and more are gearing up for it. Some are
considering 4G and better technologies for faster wireless access. All in all, it means
that we can offer services that require faster net access!

Services that were earlier not possible—like video—have already started appearing
and will continue to grow. Subscribers set wallpapers, ring tones, ringback tones,
true tones, and download full tracks to listen to on their multimedia phones. Most
are willing to pay for games. Many companies experimenting (and some betting on)
mobile advertising—though 79% of users felt such ads intrusive!

Mobiles are transforming from communication devices to content devices, and will
further transform to transaction devices. The evolution is happening faster than
we think.

Mobile Usage Around the World is Not the
Same
For every computer in the world, there are three mobile phones. Studies show
that by 2010, there will be 4 billion mobile phones on this planet, and if we see
the 2007 numbers, we may reach there well before 2010. 4 billion is 60% of the
global population! Mobiles have provided an affordable and accessible computing
platform. For most users, their mobile phone is their primary connection with
high-tech, and more importantly the Web!

Chapter 1

[15]

At the same time, the maturity of the mobile market differs widely in different
regions. Japan and Korea are the most advanced, whereas Brazil, Russia, India,
and China are seeing a volume growth. In developed countries, most people
have exposure to computers and they adopt mobile web applications faster. In
developing countries, communication and entertainment applications are proving
more successful. There is a huge potential for low-cost services that can benefit large
portions of the population.

When you build your mobile web application, make sure you understand the market
well and launch the product accordingly. You may be too early or too late otherwise!

Mobiles and Desktops
When people access the Web from their mobile phones, they are in a different
context. They may be traveling, waiting for something else to happen, looking for
a nearby restaurant, wanting to take care of some chore or just browsing for fun.
Mobiles are hardly used like the typical desktop is. Here is the first lesson to learn in
mobile web application development:

People Use Their Mobiles Differently Than
Their Desktops
Let's take an example. When you are at your desktop, you are doing one
thing—using the computer for the job at hand. You have a large screen which, can
represent a multitude of information. You are used to seeing a lot of information on
the page, scanning it quickly with your eyes, and then clicking on something that
looks useful. You have access to broadband internet connection and can experience
multimedia content fully. You may be running a few applications on your computer
and may have a few tabs open in your browser.

Now, you want to find out something about the latest Harry Potter movie. You open
a new tab in your browser, and do a Google search for it. You see a list of reviews
about the movie, the storyline, and the cast. You may jump up to IMDB in another
tab and review the details. You may open the movie site to view a preview. You
think it's a watchable movie. So you call up your wife to check if Saturday evening
would be good for her and the kids. She confirms. Then you think you should check
with your neighborhood buddy too—he was talking about taking his kids to the
movie too. So you pull up your instant messenger and send him a message. He
says it will work! So you can now book the tickets. You do another Google search
to find out movie theaters running Harry Potter around your home. You find two.
You compare the timings and decide on one. After a few screens to make the movie
selection, timings, and the number of tickets, you punch in your credit card number

Getting Mobile

[16]

to make payment. It processes the request over a secure connection and shows you
the confirmation screen. You click to see a printable ticket, print it, and keep it with
you, not forgetting to inform your kids, your wife, and the friend that tickets are
booked. The following figure shows this process.

How Would You Do This Using Your Mobile?
First, when would you use your mobile to do something like this? When you use
your mobile to do a Google search on the Harry Potter movie, most probably you are
looking for a nearby movie theater to go and watch the movie today evening! Would
you like to research on the movie, the cast, and what the latest issue of E! wrote
about them while you are rushing to your office, holding your bag in one hand and
a newspaper in another? Would you like to view the movie preview when loading
a simple page takes 30 seconds? Would you like to instant message your friend and
engage in four screen long e-commerce experience when you don't have a mouse
or keyboard, and the only way to enter information is 12 numeric keys and 4 arrow
keys? Most probably not!

Most of the actions you would do from a desktop to buy movie tickets will not be
convenient from a mobile. It is too cumbersome to go through long pages using
a set of arrow keys. We will need a recharge of patience if we wanted to watch a
movie preview on low speed mobile networks. We may be more comfortable with
something like this:

You are traveling back home, and recall you promised to take the kids for a movie
tonight. It's been a busy day and you couldn't buy tickets during the week. You
pull out your phone, and fire up the browser. You load up Google and do a search
for Harry Potter. It shows you a simple page with the movie title at the top, star
rating, and a three-line description of the plot. This is followed by a list of five movie
theaters around this location and timings at which they are showing the movie
tonight. You think your neighborhood buddy might be interested in the movie

Chapter 1

[17]

as well. So you back out from the browser a bit and call him up to find out. He
confirms. You come back to the browser, and select the third theater by hitting 3 on
your keypad. Next, you enter the number of people and select the show—again with
the numeric keypad. You get a confirmation screen to book the tickets, you confirm
by pressing a key on the phone. It sends out an SMS to the theater placing the order.
Within moments, you get an MMS informing that the tickets are booked; you will
see the charge in your next phone bill. Attached is an image with some bar code. You
save the message and send an SMS to your kids, your wife and your friend that you
are going for the movie tonight!

Once you reach the movie theater, you show the barcode image through your phone.
The bar code reader recognizes it and prints you the tickets. You buy some popcorn
and enjoy the movie with your friends and family.

The tasks people want done using their desktop computers are different from the
ones they want to get done using their mobile phones. The resources available at
a desktop computer are much different from those of a mobile. You may use the
desktop computer for longer research. You may use the mobile for quick messaging
and on-the-go tasks. You may use mobile web to read up your email, search for a
few things, look up the price of your favorite stock, send a quick message or two,
stay in touch with your friends, blog about what you are up to or quickly book a
movie ticket!

Subscribers also have to pay for mobile usage; most would not prefer to stay online
for long times unless they have unlimited access plans. Mobile usability is one of
the biggest hurdles in mobile web, and it requires careful planning of not just the
content, but also the navigation, clicks, input required, and the time it will take to
carry out a task. We will discuss mobile usability and related best practices in detail
in the next chapters.

Getting Mobile

[18]

It's Not All Rosy—Mobile Devices have
Limitations
It becomes critical to understand mobile usability not just because users are in a
different context when they access mobile web, but also because mobile devices
have their own limitations. Mobiles are not full-fledged computers. On top of it, each
mobile device is different. Manufacturers have to distinguish their devices for them
to sell. Network operators sometimes offer customized phones, and they are tied
heavily into their way of things.

Typical mobile devices have screen sizes from 120x120 pixels up to 320x240. This
means you can show about 6 lines of 25 characters in a screen! They may have a
QWERTY keyboard or stylus, or have just the numeric keypad for input. They may
not have processors that can deal with complicated calculations or even the RAM
to hold your entire page before rendering it! They may support only a limited set
of image and multimedia formats—e.g. Animated GIFs are not supported on most
phones. Different browsers will render the same page differently—some will strip
out formatting completely, while some will shrink the display to fit the smaller
size of the device. Some will remove images and some may not work with access
key-based links. Some have a 9.6kbps link to the Internet, some have higher. Some
may support handheld CSS, while some may only support WML. A device comes
from design to market in 18 months, so manufacturers skip upgrading current
devices to push newer models.

This means that there are millions of devices with differing capabilities that may
access your mobile website. And you have got to make sure that your site looks and
works OK with them. You not only have to test with many browsers, emulators,
and actual devices, but you have to keep listening to your users and make
adjustments accordingly.

Advantages of Mobile Web
Despite all the limitations, there are certainly advantages to using mobile web. The
biggest benefit is that the user can access information anytime, anywhere, and when
she or he wants. It frees her or him from the boundaries of the desktop and allows
accomplishing tasks from anywhere. Because it can be used from anywhere, a mobile
phone knows its location. This means we can develop location-sensitive applications,
for example, showing restaurants in three blocks of where the user is. And as most of
the mobile devices have phone capabilities, mobile web can be used to start a call or
message to take quick action.

Chapter 1

[19]

And as we have already seen, the number of mobile phones is more than thrice that
of computers in the world. Mobile web can be the means to bridge the digital divide,
to bring the power of computer and internet to the rest of the world.

But There are Many Ways to Do Mobile
Web Development!
You have a good set of options when you want to develop for mobile devices. You
can develop platform-specific applications that subscribers may download. These
applications may internally connect to the net and perform some operations. J2ME
(Java 2 Platform Mobile Edition), Symbian, or BREW/uiOne from Qualcomm can
be used for mobile web development. Adobe's Flash Lite is another platform that's
gaining acceptance.

Yet, the most common method of developing for mobile web is using XHTML
(Extensible Hypertext Markup Language) and WML (Wireless Markup Language).
Use of content-only markups like RSS and other micro-formats is also on a rise. With
this, the device itself can decide how to present the information, while the website
only provides the content.

What About WAP?
If you have been around the technology industry for a while, you may remember the
hype around mobile web and WAP in the 1999 – 2000 days—just before the bubble
burst. You may also remember the phone Neo used in the movie The Matrix. That
phone was Nokia 7100, the first phone to support WAP—Wireless Access Protocol.
WAP is the protocol to access the Internet from a mobile device. It provided an XML
based language—Wireless Markup Language (WML), using which you could do
mobile web application development.

Though served over normal HTTP server, the WAP architecture has a gateway
between the server and the client. This gateway encodes the content in binary form
to save bandwidth before sending it to the client and allows monitoring usage by the
service provider.

The WAP specifications have evolved over time, and the standard now is WAP 2.0.
This adopts an XHTML variant—XHTML Mobile Profile (XHTML-MP). XHTML-MP
offers richer presentation and is very similar to HTML. We are going to use
XHTML-MP for this book.

Getting Mobile

[20]

Bringing Order with Standards and
Guidelines
The only way to bring order to the chaos in mobile development is to establish
standards and guidelines. W3C's Mobile Web Initiative has been instrumental in this.
It has best practices for mobile web development, and also a specification mobileOK
to determine whether your site can work on various mobiles or not.

XHTML Mobile Profile is the standard language for mobile web development.
XHTML-MP is built on top of XHTML Basic. W3C developed XHTML Basic
originally for mobile devices but Open Mobile Alliance (OMA) added support for
WAP CSS (WCSS) and other usability enhancements over XHTML Basic and defined
it as XHTML-MP. Hence XHTML-MP has been adopted as a standard by device
manufacturers. Most phones support it.

There are many opinions about mobile web development today. Because the need is
to show mobile web content in an acceptable manner to a wide variety of handsets
and browsers, the two most common practices are "adaptation" and "lowest
common denominator".

Adaptation, sometimes called multiserving, means delivering content as per the
device's capabilities. Adapt the content to suit the device so that it looks best to the
user. Different techniques are used for adaptation—including detection, redirection,
setting correct MIME types, changing links, and removing or scaling graphics.
The "lowest common denominator" or LCD method establishes a minimum set
of features expected from the device and develops content adhering to those
guidelines. The minimum expected feature set is also called the Default Delivery
Context (DDC).

W3C-Defined Default Delivery Context
Usable Screen Width: 120 pixels, minimum
Markup Language Support: XHTML Basic 1.1 delivered with
content type application/xhtml+xml
Character Encoding: UTF-8
Image Format Support: JPEG, GIF 89a
Maximum Total Page Weight: 20 kilobytes
Colors: 256 Colors minimum
Style Sheet Support: CSS Level 1. In addition, CSS Level 2 @media
rule together with the handheld and all media types
HTTP: HTTP/1.0 or more recent HTTP 1.1
Script: No support for client-side scripting

•
•

•
•
•
•
•

•
•

Chapter 1

[21]

Adaptation is Better, but LCD is Easier
Adapting according to the device capabilities is the ideal solution for delivering
mobile web. At the same time, most developers will want to first achieve LCD before
doing adaptation. The reasons for going with the lowest common denominator are
many. Adaptation involves extra cost and complexity. It also requires changes on the
server side to detect and deliver content; this may not be possible for all. If you are
doing mobile development for the first time, it may not be easy to adapt. LCD may
also be sufficient in cases where usage of the mobile site is limited.

For our examples, we will start with LCD and move to adaptation in later chapters.

Summary
We have quite a few basics in place now, so let's do a quick review:

Things are moving mobile! There are already successful mobile
web applications.
Mobiles will reach 60% of the world population by 2010. For many users, this
will be the first exposure to high tech and internet. A mobile device will be
their first computer!
Mobile data usage around the world is growing exponentially.
Mobile web is about delivering the Web to mobile, and to utilize features of
the mobile platform.
Mobile devices come in all shapes in sizes—features, screen sizes, input,
connectivity, multimedia, etc.
Mobile usability is a big challenge—people use mobiles differently from
their desktops.
XHTML-MP is the standard language for mobile web development.
Adaptation is the ideal method for content delivery, but lowest common
denominator may work.
The opportunity for mobile web is huge!

So let's go ahead and start developing some mobile web content!

•

•

•

•

•

•

•

•

•

Starting Your Mobile Site
Now is the time for us to start developing mobile web applications. In this chapter,
we will get our first look at the example site we'll be building in the book: "Pizza On
The Run". ������������������������������ Specifically, we will look at:

Picking the best method to deliver your site to mobile browsers
Designing navigation and information architecture
Setting up a development environment
Learning XHTML Mobile Profile—the presentation language for
mobile applications
Developing Pizza On The Run's mobile site homepage

By the end of the chapter, you will have a solid foundation for building complex,
powerful mobile sites.

Pizza On The Run and the Mobile Web
Luigi Mobeeli owns Pizza On The Run—a small-time pizza shop in Sunnyvale. Luigi
cooks some delicious pizzas, just like his parents who started the shop. Situated in
the heart of Silicon Valley, POTR is hugely popular amongst geeks because of its
quick delivery and round-the-clock service. With so many geek friends around, Luigi
caught on to technology early. About 25% of POTR orders come through the website.
But Luigi is not very happy.

Close to 70% of the customers picked up a phone and ordered their pizzas. Luigi
knew many by name, and even their favorite pizzas. He could guess what they
would order and where to deliver just by the hearing their name. But the business
was growing and he couldn't always take the calls. Many customers had to wait a
long time to get through the line, and then spend more time figuring out what to
order. When Luigi ran some special offers, the time per order on the phone went up
as well—understanding the offer and then deciding to opt for it.

•
•
•
•

•

Starting Your Mobile Site

[24]

POTR needed something better, faster, and more efficient. And Luigi had an
idea! What if he automated the whole process? What problems would it solve if a
customer could order a pizza on her way to the coffee machine?

Luigi knew that customers want to place an order as quickly as possible. When not in
the "transaction mode", they may want to find out about special offers or go through
details of various menu options. And that's pretty much all they may want from the
mobile version of POTR website. It would also be great if they could just repeat one
of their last orders!

So Luigi wants to let people order pizza using their mobile browsers. What could
he do?

Different Options for Going Mobile
If you want to deliver your website to mobile devices, you essentially have
four options.

1.	 Do nothing: just leave the site as it is and let the user's mobile browser
render it.

2.	 Remove formatting: simplify the site so that it loads faster and uses less
bandwidth, but leave the design the same.

3.	 CSS-based design: use a different Cascading Style Sheet file for mobile
visitors and define mobile optimized formatting of various page elements
through this CSS.

4.	 Create a new site: develop a version of your site tailored for mobile browsers
and people on the move.

What is CSS?
A Cascading Style Sheet (CSS) is a way to define the visual appearance
of different HTML elements. You can specify the size, color, and position
of standard HTML elements like <body>, <p>, <td>, etc. as well as
sections you define using a name or id. CSS has become the preferred
way of formatting well structured HTML code over the years because it
facilitates having standard design throughout the website, and managing
it from a single file.

Let's look at each of these in turn…

Chapter 2

[25]

Do Nothing
This may sound surprising, but many mobile browsers can render websites well
on the small screen. Most notably the techniques adopted in Opera's Small Screen
Rendering (SSR), Apple's iPhone, and the new Nokia Browser deliver very good
results. Browsers may scale down the website display at the client side, or pass it
through a server-side routine that will make necessary adjustments to the HTML
and images. Some browsers simply remove all the CSS and formatting information
while showing the main text and links to the user. If you do nothing, your website
may still be visible on a mobile browser, though it may not look and function as you
may want. Luigi had already noticed visitors using mobile browsers in the website
statistics and even received orders through such customers.

When to Use This Approach
You don't expec�� t enough people coming to the site from a mobile device.
Most of your users are using Smartphones or other large-screen devices with
a capable browser.
People want to use your website just the way they use it on their desktop;
they don't want any ������������������������� mobile-specific features.
You do not have the time or resources to use other methods!

When to Avoid This Approach
You want to reach the maximum number of potential customers.
When people access your site from a mobile device they have a specific task
at hand that they need done fast.
You want to deliver the best experience to your mobile customers!

Remove Formatting
One of the biggest difficulties for mobile browsers is to parse the HTML and lay out
the page. Complex formatting rules mean more computing operations, and this may
not be available to small devices because of limited CPU and RAM. Most mobile
subscribers also pay bandwidth charges per kilobyte, so heavy HTML and images
will make a big hole in their pockets. If we make a "vanilla flavor" of a website,
removing formatting, images, objects, and other complications, it would display
reasonably well on any mobile browser.

•

•

•

•

•

•

•

Starting Your Mobile Site

[26]

There are even tools that allow you to do this easily. IYHY.com, Skweezer.net, and
Mike Davidson's PHP include files that can make your site mobile-friendly in just
two minutes (http://www.mikeindustries.com/blog/archive/2005/07/make-
your-site-mobile-friendly). Note that your site may not look pretty with this
approach! More often than not, you end up with pages full of text links and URLs.

When to Use This Approach
You want a quick and dirty way to make your site mobile-usable!
You want to cover most mobile browsers.
Your site is mainly text and has a good navigation structure.

When to Avoid This Approach
When the site needs good UI design. You don't want the visitors scrolling
pages full of text.
When the majority of the content is not really useful for a mobile visitor.

CSS-Based Design
If you don't want to keep two versions of your site, yet deliver a usable site on a
mobile, you can control the lay out of the site using CSS. First, develop your site in
a standard web browser; make sure you lay out the content effectively using CSS.
CSS allows positioning of content in any way that you want, even if the content is
not written in that order in the XHTML. But this is a pitfall with CSS; ensure that
your XHTML code is well structured and in the order you want to show the content.
This will make it easier for browsers that load CSS once content is loaded and apply
formating after that.

Once you have got this far, the next step is to add an alternative CSS to be used
when the site is accessed from a handheld device. This solution is a recommended
approach for many simple needs. It also adheres to the W3C principle of Device
Independence—delivering the same content to any device. Luigi thinks this can be
a good way to start his mobile site—in any case most of the current site is based on
CSS, so he just needs to add an extra CSS file!

Here's how you can add an alternative stylesheet link in your XHTML page:

<link rel="stylesheet" type="text/css" media="handheld"
href="mobile.css">

Notice the use of media attribute. It tells the browser to use this CSS only if it is a
handheld browser.

•

•

•

•

•

Chapter 2

[27]

Wireless CSS
Wireless CSS (WCSS) is a special derivative of CSS for mobile devices. It supports
most of the CSS 2 properties, and contains some additional properties for mobile
devices. These include some animation effects and input formatting rules. We will
learn more about WCSS in the next chapter.

When to Use This Approach
You want th�� e same content and information architecture delivered on both
desktop and mobile, with formatting changes to suit the device.
You want a simp�� le and effective way to deliver on the mobile.
You already have a lot of content styled using CSS and want to quickly make
it available on mobile.

When to Avoid This Approach
You do n��� ot want visitors to incur heavy bandwidth charges by downloading
all the images.
Your site vis�� itors do not use a mobile browser that supports CSS.
The current site uses tables for most of the formatting, rather than CSS.

Mobile Site
Finally, you can have a full fledged version for mobile browsers. Scaling down the
display of the site or presenting the same content of a site to a mobile user is not
always the best thing. The expectations of a mobile user are very different from those
of a desktop user. As we discussed in the first chapter, when you Google for a movie
from a mobile device, you most probably want to book a ticket, rather than reading
long reviews and controversies. This means when you develop sites for mobile
devices, you should tailor not only the design, but also the navigation, flow, and
content. You can even go to the extent of adapting presentation depending on the
capabilities of mobile device. This is the panacea of mobile web delivery.

When to Use This Approach
When you want to deliver the most usable experience to the user.
When you want to use phone-specific features like invoking a phone call.
When many users will access the site from a mobile for a particular task. And
you want to make sure they can get the job done fast.
When you want to deliver smaller files to mobiles to facilitate faster browsing.
When it makes business sense to spend the time and resources on the effort.

•

•
•

•

•
•

•
•
•

•
•

Starting Your Mobile Site

[28]

When to Avoid This Approach
When most of the users are using the site from their desktop computers.
There is no real need for accessing the site from a mobile.
You want to avoid the efforts, learning curve, and the overhead involved.

Luigi is now clear that he wants to deliver the best experience to his customers.
Rather than moving the full site to a mobile version, he decides to do only a portion
of it—parts that a mobile web user would be interested in. This boils down to
making it easy to order pizzas by developing a mobile-specific site, and providing a
link to the normal site for people who want to know more.

Luigi has also figured out that XHTML Mobile Profile (XHTML MP) is the best
method to build his mobile site. It converges web with mobile and the biggest
advantage is that the same technologies, tools, and skills used to develop websites
can be used to develop for mobile web delivery. So he and his geek friend can easily
pull together a mobile version of the site using their existing capabilities. It will even
be easy to port the existing site to the mobile version with minor changes.

Luigi has a lot of work ahead, so let's see what's next!

Mobile Navigation and Information
Architecture
We now know that a mobile web user has different goals while accessing a site.
He/She may not be looking for a lot of information, and wants to complete the task
at hand. Different mobile devices have different capabilities and we must take care of
that while designing our mobile website.

This poses different challenges for the information architecture and navigation of a
mobile site.

•

•

•

Chapter 2

[29]

Step-By-Step: Planning the Structure of Your
Mobile Site

Define user personas: Who is going to use the site? What's the target market?
In what circumstances will they come to the site? What's the context? List
down typical users who would use the application.
Define user goals: What tasks do they want to achieve on the site? Is there a
better way of achieving these goals than a typical website flow? Why would
they want to do this task over a mobile? How does your mobile site help
them accomplish their goals?
Define target devices: Do you want to limit to a particular set of devices?
Or use some device-specific feature? Do you want to use SMS/Phone
capabilities?
Do paper prototypes: Sketch out the workflow for accomplishing user goals
on paper (yes, pen and paper are still useful!).
Test with real users: Show the prototype to real users and get their feedback.
Make modifications, accordingly.
Make XHTML prototype and test again: After you've passed the paper
prototyping round, convert the prototypes into XHTML MP. Now test
them on target mobile devices. Test them also with real users and make
modifications till you get things right.

Let's think about the Pizza On The Run application to understand this better. POTR
is similar to a shopping cart. In typical online e-commerce systems, you will have
a shopping cart, you will browse products, and add items you like to the cart. You
then move to checkout, make the payment, and complete the transaction. If we take
the same approach on POTR, we will have a browse option to review the menu
details, an add-to-cart button on each product page, a shopping cart to review the
order, and the checkout process.

What could be a better way to order pizzas? Luigi says the users want to order
pizzas quickly. They do not want confusion. It is best to present limited content
and allow them to make quick choices that lead to the final order. In the case of side
dishes and beverages, we can actually show the full list of choices available, most
popular at the top, and users can check off the ones they want. It would also be a
good idea to offer to repeat the last order.

•

•

•

•

•

•

Starting Your Mobile Site

[30]

While structuring a mobile site, we must spend enough time on information
architecture design. If the user has to spend too much time to locate the information
he/she wants, they may get bugged and go away. No businessman would like that!
Mr. Mobeeli is certainly not going to allow that! Then, how about a structure like this?

We have prioritized the order of available options on the homepage. The pizza
ordering process is like a wizard, asking the user to take only a couple of decisions at
each step. Mr. Mobeeli is going to be happy with this!

Chapter 2

[31]

Handy Tips in Structuring Your Mobile Site
Here are a few tips you can keep in mind when you work on your mobile sites:

Take a minimalistic approach. Remove everything that you can.
Respect the user's time, money, and attention. Don't frustrate them.
Do task-centered design! Focus on user goals.
Give less choice—no long menus, no long options, no long pages.
Maximum 10 links on a page.
Navigation should be drill down, and contextual. Customize navigation
according to the page. No more than 5 levels of drilling down!
No pages with just links to drill down further. Make sure each page has
valuable content. Even the homepage should have actionable content.
Prioritize links and content. What's more important goes to the top.
Always provide a way to exit to home, and step back in the footer.
Break lengthy/complicated forms into a wizard like step-by-step process.

Setting Up the Development Environment
You can develop XHTML MP websites with any text editor. If you use an HTML
editor with code completion, syntax highlighting, and validation—it will be perfect
for mobile web development. You may want to have a good CSS editor and an
image manipulation program like Photoshop or Gimp too. Overall, your current web
development tools will work!

If you are going to use server-side processing for your application, you will need
a server-side setup. This could be PHP, .NET, JSP, Ruby, Python, Perl or any other
language. The server-side code should output XHTML MP code instead of HTML.
During testing, a setup on your machine accessible from http://localhost will
work well.

You can use a desktop web browser to test the application—since it is XHTML. It's
a good practice to test your application first in a browser, then in a mobile device
simulator. A simulator will allow you to run your application as if it is running
from a mobile device. You can test for different screen sizes and also use the keypad
to get a feel of how the user will be using the application. There are a number of
simulators/emulators available. Desktop simulators will allow you to test from
localhost, but web-based ones require you to upload your files on a server and test
from there. Most desktop simulators are Windows only, so you may need access to a
Windows system to run them.

•

•

•

•

•

•

•

•

•

•

Starting Your Mobile Site

[32]

Here are the links for the sites from where you can download them:

Openwave Phone Simulator—http://developer.openwave.com/.

Yospace SmartPhone Emulator—great collection of devices to simulate. A
browser-based demo: http://www.yospace.com/spedemo.html.

•

•

Chapter 2

[33]

Starting Your Mobile Site

[34]

Opera Mini Simulator—a wonderful Java applet-based simulator that you
can run within your browser. Works the same way as the actual Opera Mini
browser, http://www.opera.com/products/mobile/operamini/demo.dml.

Nokia Mobile Internet Toolkit includes a simulator—look for Tools and
SDKs on http://www.forum.nokia.com/ and Browsing Tools in that.
You can also find Motorola's tools from http://www.motocoder.com/ and
Sony Ericsson's from http://www.ericsson.com/mobilityworld.

Note that nothing beats a real mobile! So once you have tested your site with
simulators, test it with some real mobile devices. You will be able to understand
your users' real experience only in this way. As a matter of fact, test early and often,
on real devices.

•

•

•

Chapter 2

[35]

There is another interesting thing you will notice when you test on different devices!
Different devices have different browsers, and different browser versions have
different features (and bugs). You will experience a wide variety in terms of colors,
fonts, layout and table support, image handling, and standards compliance—in
other words, you may have many hair pulling experiences making things work on
different devices! But you will learn a lot! You need to host the application on the
public Internet to test from real devices, and it will also give you the opportunity to
test the speed of the application.

DeviceAnywhere is a cheap and effective way to test on real devices!
One great service that allows you to test on a variety of real devices is
DeviceAnywhere (www.deviceanywhere.com). They give you access
to real devices from your desktop computer. You also have more than
300 devices that you can choose from, and quite a few network operators.
Using the DeviceAnywhere Studio, you can connect to a remote device.
The Studio will take input from your desktop to the device and stream the
output screens from the device back to your desktop. This is a superb way
of testing on real devices at a fraction of the cost!

Bottomline: It's best to test with actual devices, but test on five different simulators
as well.

Hosting Your Mobile Site is Trivial
If you are wondering how to put up your site on a server to access it from
browser-based simulators and real devices, don't worry! You can host your mobile
site just like a normal site. Unlike the old days, you do not have to do any special
server setup. You can simply FTP the files to your server, and access them from a
mobile browser.

There is also a special top-level domain for mobile sites—.mobi. You can buy that,
and also host your site with dotMobi (www.dotmobi.com). One recommendation is to
keep the mobile site URL short, so that users can easily type it.

http://m.sitename.com is better than http://www.sitename.com/mobile/ You
can also implement a browser detection routine on http://www.sitename.com/ that
automatically redirects the user to the mobile version of the site if they access it from
a mobile device.

POTR Mobile Homepage
Luigi is now excited to build his mobile site. Let's put up a "coming soon" page for
him. Check the following code.

Starting Your Mobile Site

[36]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
"http://www.wapforum.org/DTD/xhtml-mobile10.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Luigi's Pizza On The Run</title>
 </head>

 <body>
 <img src="potr_logo.jpg" width="120" height="42"
 alt="Luigi's Pizza On The Run" />
 <p>Mobile ordering coming soon!</p>
 <p>If you're already hungry, call
 +1-800-POTRNOW</p>
 </body>
</html>

Here's how the code will show up in Openwave browser simulator:

and in Opera's desktop web browser in Small screen mode:

Chapter 2

[37]

Making a Call is as Simple as Email
Did you notice the link on the POTR homepage to make a call? If the user wants
to place an order, she or he can simply follow the link and get connected to Luigi's
shop. Most mobile devices can make a call or send a text message. Adding a call link
is as simple as a mailto link! Here's the code to do a single-click call:

+1-800-POTRNOW

There is a simpler method as well:

+1-800-POTRNOW

Either of these will work on most devices. Some phones do not support it, and some
others work with one method. You may need to use device-based adaptation to
determine the best way (and we will learn to do that in the fourth chapter). If you
want to keep things simple, just go ahead with the tel method.

Understanding the Homepage
You may have noticed the similarities between HTML and XHTML MP code by now!
The homepage also shows up as the same in both mobile and desktop browsers. Let
us examine different parts of the code now.

Document Structure
The first two lines of the code are the XHTML prolog. They declare the XML version
and the DOCTYPE of the document. The DOCTYPE specifies the DTD (Document
Type Definition) for the XML document—defining the grammatical rules for the
XML that follows. A validating browser may download the DTD and check that
against the XML to ensure it's in proper format. The character set in the XML
declaration line tells the language encoding for the file. You should be fine with
UTF-8 in most cases. Also, notice that you do not need to close these two elements;

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
"http://www.wapforum.org/DTD/xhtml-mobile10.dtd">

The rest is very much like HTML. It is mandatory for an XHTML MP document to
have html, head, title, and body elements. You can specify meta tags and other
document-specific information within the head element. The body element must
have at least one element in it.

Yes, it's that simple!

Starting Your Mobile Site

[38]

Fundamentals of XHTML MP
Now that we have seen how the homepage works, let us learn some more about
XHTML MP.

Before Writing Further Code, Let's Learn
Some Grammar
Since XHTML MP is based on XHTML, certain syntactical rules must be followed.
Making syntactical errors is a good way to learn a programming language, but so
that you don't get frustrated with them, here are some rules you must follow with
XHTML MP! Remember, HTML is very forgiving in terms of syntax, but make a
small syntax error in XHTML MP and the browser may refuse to show your page!

Overall, XHTML elements consist of a start tag—element name and its attributes,
element content, and closing tag. The format is like:

<element attribute="value">element content</element>

XHTML Documents Must be Well Formed
Since XHTML is based on XML, all XHTML documents must adhere to the
asic XML syntax and be well formed. The document must also have a
DOCTYPE declaration.

Tags Must be Closed!
All open tags must be closed. Even if it is an empty tag like "
", it must be used
in the self-closed form like "
". Note the extra space before the slash. It's not
mandatory, but makes things work with some older browsers. If you can validate
within your editor, make it a practice to do that. Also cultivate the habit of closing a
tag that you start immediately—even before you put in the content. That will ensure
you don't miss closing it later on!

Elements Must be Properly Nested
You cannot start a new paragraph until you complete the previous one. You must
close tags to ensure correct nesting. Overlapping is not allowed. So the following is
not valid in XHTML MP:

<p>Pizzas are <i>good.</i></p>

It should be written as:

<p>Pizzas are <i>good</i>.</p>

Chapter 2

[39]

Elements and Attributes Must be in Lowercase
XHTML MP is case sensitive. And you must keep all the element tags and all their
attributes in lowercase, although values and content can be in any case.

Attribute Values Must be Enclosed within Quotes
HTML allowed skipping the quotation marks around attribute values. This will
not work with XHTML MP as all attribute values must be enclosed within
quotes—either single or double. So this will not work:

<div align=center>Let things be centered!</div>

It must be written as:

<div align=”center”>Let things be centered!</div>

Attributes Cannot be Minimized
Consider how you would do a drop down in HTML:

<select>
<option value="none">No toppings</option>
<option value="cheese" selected>Extra Cheese</option>
<option value="olive">Olive</option>
<option value="capsicum">Capsicum</option>
</select>

The same drop down in XHTML is done as:

<select>
<option value="none">No toppings</option>
<option value="cheese" selected="selected">Extra Cheese</option>
<option value="olive">Olive</option>
<option value="capsicum">Capsicum</option>
</select>

The "selected" attribute of the "option" element has only one possible value and, with
HTML, you can minimize the attribute and specify only the attribute without its
value. This is not allowed in XHTML, so you must specify the attribute as well
as its value, enclosed in quotes. Another similar case is the "checked" attribute in
check boxes.

XHTML Entities Must be Handled Properly
If you want to use an ampersand in your XHTML code, you must use it as & and
not just &.

Starting Your Mobile Site

[40]

& is used as a starting character for HTML entities—e.g. , ", <, >
etc. Just using & to denote an ampersand confuses the XML parser and breaks it.
Similarly, use proper HTML Entities instead of quotation marks, less than/greater
than signs, and other such characters. You can refer to http://www.webstandards.
org/learn/reference/charts/entities/ for more information on XHTML entities�.

Most Common HTML Elements are Supported
The following table lists different modules in HTML and the elements within them
that are supported in XHTML MP version 1.2. You can use this as a quick reference
to check what's supported.

Module Element
Structure body, head, html, title

Text abbr, acronym, address, blockquote,
br, cite, code, dfn, div, em, h1, h2,
h3, h4, h5, h6, kbd, p, pre, q, samp,
span, strong, var

Presentation b, big, hr, i, small

Style Sheet style element and style attribute
Hypertext a

List dl, dt, dd, ol, ul, li

Basic Forms form, input, label, select, option,
textarea, ������������������ fieldset, optgroup

Basic Tables caption, table, td, th, tr

Image img

Object object, param

Meta Information meta

Link link

Base base

Legacy start attribute on ol, value attribute on li

Most of these elements and their attributes work as in HTML. Table support in
mobile browsers is flaky, so you should avoid tables or use them minimally. We will
discuss specific issues of individual elements as we go further.

Chapter 2

[41]

XHTML MP Does Not Support Many WML
Features
If you have developed WAP applications, you would be interested in finding the
differences between WML (Wireless Markup Language—the predecessor of XHTML
MP) and XHTML MP; apart from the obvious syntactical differences. You need to
understand this also while porting an existing WML-based application to XHTML
MP. Most of WML is easily portable to XHTML MP, but some features require
workarounds. Some features are not supported at all, so if you need them, you
should use WML instead of XHTML MP. WML 1.x will be supported in any mobile
device that conforms to XHTML MP standards.

Here is a list of important WML features that are not available in XHTML MP:

There is no metaphor of decks and cards. Everything is a page. This means
you cannot pre-fetch content in different cards and show a card based on
some action. With XHTML MP, you either have to make a new server request
for getting new content, or use named anchors and link within the page.
You could use the <do> tag in WML to program the left and right softkeys on
the mobile device. Programming softkeys is not supported in XHTML MP;
the alternative is to use accesskey attribute in the anchor tag (<a>) to specify
a key shortcut for a link.
WML also supports client-side scripting using WMLScript—a language
similar to JavaScript. This is not supported in XHTML MP yet, but will come
in near future in the form of ECMA Script Mobile Profile (ECMP).
WML also supported client-side variables. This made it easier to process
form data, validate them on the client side, and to reuse user-filled data
across cards. This is not supported in XHTML MP.
With XHTML MP, you have to submit a form with a submit button. WML
allowed this on a link. WML also had a format attribute on the input
tag—specifying the format in which input should be accepted. You need
to use CSS to achieve this with XHTML MP.
There are no timers in XHTML MP. This was a useful WML feature making
it easier to activate certain things based on a timer. You can achieve a similar
effect in XHTML MP using a meta refresh tag.
The WML events ontimer, onenterbackward, onenterforward, and onpick
are not available in XHTML MP. You can do a workaround for the
ontimer event, but if you need others, you have to stick to using WML for
development.
XHTML MP also does not support the <u> tag, or align attribute on the <p>
tag, and some other formatting options. All these effects can be achieved
using CSS though.

•

•

•

•

•

•

•

•

Starting Your Mobile Site

[42]

Summary
In this chapter, we learned the basics of developing mobile web applications.
We even created a temporary homepage for Luigi! Specifically, we learned:

Different methods of mobile web development—doing nothing,
simplification, CSS, and mobile-specific sites
Designing information architecture and navigation for mobile
Setting up a development environment, including simulators
Hosting your mobile site
Creating XHTML MP documents, the subset of XHTML that works on
the web
An easy way to make "clickable" phone numbers in your web apps
Supported elements and language rules of XHTML MP

In the next chapter, we will implement most of the POTR mobile site. We will look at
the graphic design and beautify our site using Wireless CSS!

•

•

•

•

•

•

•

Building Pizza On The Run
We are now ready to build a mobile pizza ordering system for Luigi's Pizza On
The Run. We have the site structure chalked out, and have also done the basics of
XHTML MP.

In this chapter, we will look at:

Designing layouts for the mobile web
Using Wireless CSS in design
Being aware of differences in mobile browsers
Creating the database and code architecture for POTR
Using forms on the mobile web
Handling user authentication
Testing our work in simulators
Constraining user input with Wireless CSS
Applying special effects using Wireless CSS

By the end of the chapter, you will be able to build database-driven mobile web
applications on your own.

Luigi's Pizza On The Run
Luigi has put up a teaser mobile homepage now, and posted a note about it on his
website. Customers have already started calling via the mobile homepage. It's much
easier for them to click a link and call! Luigi showed the proposed site structure to a
few customers and they are excited to learn how quickly they can order through their
mobiles. Luigi is now ready to build a full-fledged mobile pizza ordering system!

•

•

•

•

•

•

•

•

•

Building Pizza On The Run

[44]

Designing Layouts for the Mobile Web
Design is an important element of any software. In today's competitive world, where
everyone can offer the same service, design has become a differentiator. People want
to look at beautifully designed pages; their confidence in the product is higher if it is
well designed. How many of us would buy an iPhone just for its features? There are
other phones that provide similar or better features, but we would like to have an
iPhone because of its excellent design.

Web applications have witnessed many design trends. Designs in the sites that are
often classified as Web 2.0 sites have gradients, rounded corners, large types, CSS
designs, and fresh colors. This style of design has worked and designers now make
desktop applications as well using such styles.

You certainly want to make your mobile website look beautiful. One of the first
questions you have to answer is: what will be the size of the application? 1024x768
pixels is standard resolution of most desktops. What's the standard resolution for
mobile devices? Well, it depends; let's look at why!

Mobile Screen Sizes
The pixel resolution available on mobiles is increasing. 176x208 pixels was the
norm a while ago, but 240x320 is almost everywhere nowadays. Apple's iPhone
is 320x480 and some Smartphones now sport a VGA resolution of 480x640 pixels
(refer to the following figure). Within two years, mobiles may touch our current
desktop resolutions.

Chapter 3

[45]

While the resolution is growing, the absolute screen size is not. Even if you have more
pixels to play with, you only have 3 to 5 inches. Mobiles are also typically used at a
hand's distance; something too small may not be usable. Mobile devices are normally
taller than they are wide, and horizontal scrolling is not supported on some
devices—so if the width of application is more than the device size, part of the
application will not be shown. 150 pixels is a safe width for today, but you should
check the target customers and the kind of device they will be using before making
a decision.

Colors, Images, Page Sizes, and More
Expect at least 256 colors on a mobile device. Most mobiles support images
well—GIF and JPG are universal. As the RAM and processor capabilities are limited,
many devices keep a limit on the total size of a page—including WCSS, XHTML MP,
and images. 10 kilobytes is the minimum you can expect, but it's best to keep the
page sizes as small as possible—less than 30K is recommended. Many users browse
with images turned off to save bandwidth costs. Hence our application must not
rely on images for navigation or critical operations. Giving proper alternative text to
images becomes a must.

We also need to remember the input and navigation methods while designing a
mobile site—will the user have arrow keys for navigation or a stylus? Or would she
or he be tapping with her or his fingers? It is critical to know your customers and
design the site accordingly. Remember, mobile pages are not purely about design;
they are more about functionality and usability! Remove all unnecessary images,
CSS, and even XHTML code! Keep the design lean.

To Mobile or Not to Mobile?
Luigi is not sure what to do! He has seen Opera's small screen rendering that can
scale and fold websites to show them neatly on a mobile browser. He's got himself
an iPhone and likes the way Safari scales down websites. He keeps talking about
how he can zoom in and pan by tapping and dragging fingers. Some of his friends
are telling him about "One Web", and how users should have access to the same web
content from any device—including mobile devices. He is confused. Should Luigi
build a mobile version of the site or not?

Mobiles are becoming powerful and bandwidth cheaper. But then, how many people
really have access to such powerful devices today? The majority are still using
feature phones they bought a couple of years ago. They still have old browsers. But
they do want to order pizzas from anywhere!

Building Pizza On The Run

[46]

That's a very good argument, Luigi says. And he decides to go ahead with a
mobile-specific version of Pizza On The Run. The design will be done keeping in
mind a mobile user who wants to quickly order a pizza. We will keep things simple
and easy, just focussing on getting the task done.

Web Layouts Don't Work on Mobile Devices
Typical webpage layouts won't fit mobile devices. Given there is no mouse or
keyboard, and a small screen on the mobile device, we must choose a layout that can
flow well. A website header normally has navigation links and branding graphics.
But header links can be an overkill for mobiles. On most mobile browsers, you
navigate by clicking the arrow key. You need to keep clicking to move from one link
to another. Would you like to skip through 10 links to reach the actual content of the
page? May be not! An ideal mobile web layout would flow vertically with distinct
blocks for different page elements.

Simple links at the top of the page are great for the first page of a mobile site, and
may not be needed on the inside pages. The sequence of clicks the user has to go
through to reach a particular page (referred to as the clickstream) must be short.
The most frequently used options should come up first. It's best to provide a header
and minimal textual navigation at the top. Links to home and other important
pages can be placed in the footer. Even the content should be broken down into
easy-to-comprehend sections. You should avoid putting the same text content from
your website onto the mobile web. It is best to rewrite the text copy of the site to
serve the mobile users better.

Chapter 3

[47]

Remember: As a mobile web developer, you must understand users. The
entire design for the mobile site must be done for the user. Give them
what they want and make it simple to get it. And keep learning from
your experiences.

We will use simple vertical blocks for designing POTR. We will also keep images to
the minimum and use clean XHTML code.

Using Wireless CSS as the Silver Bullet,
Almost!
Most of us extensively use tables for layout design on websites. Tables are supported
on most mobile browsers, but nested tables may not work. On the Web, CSS is
preferred for designing page layouts. Fortunately, XHTML MP-compliant browsers
too support Wireless CSS (WCSS), a subset of CSS 2.1. WCSS is very effective in
controlling the layout of the site and should be used to flow the page in blocks and
decorate elements. If you currently use CSS to style your documents, WCSS will
not be a problem at all—it's just the same actually! We will talk about some special
styles useful in mobile development as we build the POTR application. If you
want to learn more about WCSS, Developers' Home has an excellent tutorial at:
http://www.developershome.com/wap/wcss/.

You can style your current website to render well on a mobile device using CSS. You
may hide certain portions with display: none or size images and text to fit well on
a mobile device. However, keep in mind that even when you scale images or hide
content blocks with CSS, they still download to the mobile browser before CSS is
applied. This means your users may have to wait longer for the page to render and
pay higher bandwidth charges.

Another important thing about CSS on mobile platforms: many browsers will render
the page in two passes: first to load the content, and then to apply the style sheet. So
the user may see basic HTML formatting before the style sheet is loaded and applied.
This is especially true if you are loading an external style sheet.

Here are the five ways you can apply CSS in an XHTML MP page:

1.	 Linking to an external style sheet:
	 <link rel="stylesheet" href="site.css"
 type="text/css" media="handheld">

2.	 Style definition within the document:
	 <style type="text/css" media="handheld">...</style>

Building Pizza On The Run

[48]

3.	 Document style sheet with @media qualifier:
	 <style type="text/css">
	 @media handheld { ... }
	 </style>

4.	 Importing an external style sheet to the document:
	 <style type="text/css">
	 @import url(...) handheld;
	 </style>

5.	 Inline style for an element:
	 <p style="align: left">Some text</p>

The preferred method is to link to an external style sheet and use inline styles to
override. The following code defines the CSS we will use for POTR:

/* POTR Mobile Style sheet */
body, td, p {
 /* Most devices have their own fonts, but let's give it a shot */
 font-family: Verdana, Arial, Helvetica, sans-serif;
 font-size:1em
}
h1, h2 {
 color:#660033;
 border-bottom: 1px #000000 solid
}
h1 {
 font-size:1.4em
}
h2 {
 font-size:1.2em
}
h3 {
 font-size:1em;
 font-weight: bold
}
ul li {
 list-style: square
}
img {
 border: none
}
.error {
 color:#CC0000;

Chapter 3

[49]

 border: 1px #FF0000 solid;
 font-size: 0.8em;
 padding-left: 20px;
 background: left no-repeat url(error.gif) #FFFF99
}
.debug {
 background-color:#EEEEEE;
 border: 1px #FF0000 solid
}
.button {
 border: 1px #FF6600 solid;
 background-color:#CCCCCC;
 font-size: 1.2em;
 font-weight: bold;
 margin-top: 0.5em;
 padding-left: 1em;
 padding-right: 1em
}

Consider that a mobile device may not have many fonts, especially not the ones
we are used to. Typical devices have a few non-generic fonts, and at least one font
from serif, sans-serif, and monospace families. Hence, our designs must not rely
on particular fonts. When you are creating images and need to put text in them,
bitmapped fonts will work better at small sizes.

Notice that we have used em as the measurement unit in most cases. Defining sizes
relative to element size is very flexible and will render well across multiple browsers.
We use standard heading tags and other HTML elements for formatting so that even
if the browser does not have CSS support, our page will render acceptably.

We have defined custom styles for form buttons, errors, and debug messages. We
have increased the size of the font in the button and given it some extra padding
on the left and right to make the button larger. This will make it easier to locate and
use the button.

How will this CSS look? Let's create a sample page and test it in different browsers.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>CSS / Forms Testpage</title>
<link rel="stylesheet" href="assets/mobile.css" type="text/css" />
</head>
<body>
<p class="error">Sorry, this is an error sample!</p>
<h1>h1 heading</h1>
<h2>h2 heading</h2>

Building Pizza On The Run

[50]

<p>Normally you will have some text after the heading.
 This is a sample of that.</p>
<img src="assets/potr_logo.jpg" alt="Luigi's Pizza on the Run"
 width="120" height="42"/>
<h3>h3 heading</h3><p>Sample text after smaller heading.</p>
<table><tr><td>
List itemList itemList item
</td><td>
List itemList itemList item
</td></tr></table>
<form><fieldset>
Text field: <input type="text" />

Select box: <select><option value="1">First option</option>
<option value="2">Second option</option><option value="3">Third
 option</option></select>

<input type="radio" name="handsetType" checked="checked" />Phone
<input type="radio" name="handsetType" />SmartPhone

Text area: <textarea rows="3" cols="30" name="details">Some
 details here.</textarea>

<input type="checkbox" name="terms" value="1" />I agree
 to the terms

<input type="submit" value="Send" class="button"/>
</fieldset></form>
</body></html>

	 Internet Explorer	 Openwave	 Opera Mini 4

Chapter 3

[51]

The CSS renders well for these browsers, though margins, font sizes, and form
element rendering are inconsistent. Table support is present, and basic HTML
elements render very well. The error message at the top has the most complicated
CSS, but it shows up perfectly! Overall, we are good! We can now plan the back end
for POTR.

Creating the Database and Code
Architecture for POTR
We have learned the basics of graphic design and layout for mobile web applications.
Now, we will build the back end for Pizza On The Run. We want to allow easy
ordering of pizzas from mobile devices. We don't need to make the back end much
different from what it would have been for a website, so we will quickly go through
the common parts and look at the differences in detail.

Classes for POTR
We need to retrieve menu data from the database and save order information. We
also need to provide user authentication. Most operations in our POTR site are
related to the database, and are repeated. The Create, Retrieve, Update, and Delete
(CRUD) operations are most common. So let us create a common class that others
can extend—the common class will have all database-related functions and other
frequently used methods.

Building Pizza On The Run

[52]

One order can contain multiple pizzas. Each pizza has a base price and the user can
customize the size, crust, and toppings, which add to the price. Thinking about all
this, we can have a class structure as shown in the following figure:

Database Schema
Deriving from the class structure, we can have a database schema as in the following
figure. A few important notes:

Product categories will be Pizzas, Side Dishes, and Beverages.
The Products table will contain details of individual products. Variations are
possible only on pizzas, so we don't need to relate them with all products.
The variation type will decide what type of variation it is—Size, Crust,
or Toppings.

•

•

•

Chapter 3

[53]

Each order may have one or more products in it, and if the order item is a
pizza, it will have variations.

Coding Framework
We will use a simple fusebox-style coding framework. You may already be familiar
with this style, but if you are not, it's easy to understand. Take a look at the following
figure. All requests will pass through a central controller—index.php. Based on the
value of the "action" variable, it will include another file. This action-specific file will
carry out the business logic. At the end, the resulting XHTML will be sent back to the
user's browser. Layout design is defined mainly in the header and footer files.

Request / Response

index.php
Central Controller

header.inc.php
XHTML prolog, CSS,

header markup

footer.inc.php
Footer navigation,

Debug output

prepend.inc.php
Configuration, include

class definitions

action.inc.php
Handler for specific
action. Instantiate

classes and perform
business logic. Also
output XHTML result

Database

•

Building Pizza On The Run

[54]

Redoing the POTR Homepage
We now know enough to start the actual code. The current POTR homepage promises
people that online ordering will start soon. Let's start by spicing up the homepage!
Our homepage file will be called home.inc.php and will be the default action.

Let's look at the various parts of home.inc.php.

<img src="assets/potr_logo.jpg" alt="Welcome to Luigi's Pizza On The
Run" width="120" height="42"/>

Order Pizzas
Login
Call Us / Directions</
li>
Special Offers

The first line shows our logo. We then use an ordered list to show a navigation
menu. This will make sure the menu shows consistently across browsers. The
accesskey attribute in each link provides a shortcut key for that link. Pressing the
'accesskey' will activate a particular link without needing to navigate with arrows.
We have ordered the links by priority so that the user can perform the desired action
faster. The first two links point to forms on the same page, while the next two load
a new page by passing the action parameter to the same index.php file. Notice
that this navigation is only in the homepage. We do not repeat this on other pages;
otherwise we could put this in the header.inc.php.

The "name" attribute on <a> is not a valid XHTML MP markup. Use
"id" instead for anchored links.

We start the ordering process right on the homepage. The following code shows
the code for selecting the number of pizzas you want to order. On a mobile device,
navigating through links is easier than using a select drop-down menu. So, we show
normal links to select up to 4 pizzas. Then we provide a select box to select up to
9 pizzas. We use selected="selected"—full XHTML compliant form—to select
5 as default quantity in the drop down. All attributes are lower case and values are
enclosed in double quotes. Also notice that & is escaped correctly in the links.

<h2>Order:</h2>
<form method="post" action="index.php">
<fieldset>
<input type="hidden" name="action" value="order" />

Chapter 3

[55]

<input type="hidden" name="step" value="1" />
<p>How many pizzas?
1 -
2 -
3 -
4 -
<select name="numPizza">
<option value="1">1</option>
<option value="2">2</option>
<option value="3">3</option>
<option value="4">4</option>
<option value="5" selected="selected">5</option>
<option value="6">6</option>
<option value="7">7</option>
<option value="8">8</option>
<option value="9">9</option>
</select>
<input type="submit" name="option" value="Select"/>
</fieldset>
</form>
</p>

On the homepage, we also want to show the login form. We include the login.
inc.php file for this. We are including a separate file because the login form will be
needed in the checkout process too. So if we have a separate file, we can use the same
code at both these places.

<?php
include("login.inc.php");
?>

Let's s now see the code in login.inc.php.

<?php
// If we can find the username / password in the cookie (
// stored on last login), or if the page
// is called again - on a failed login - fill them up automatically
// Ideally, we should clean up and validate these variables
// before using them
$myUsername = ($_COOKIE["potrUsername"] != "")? $_
COOKIE["potrUsername"] : $_POST["username"];
$myPassword = ($_COOKIE["potrPassword"] != "")? $_
COOKIE["potrPassword"] : $_POST["password"];
$returnUrl = isset($_REQUEST["return"]) ? $_REQUEST[
 "return"] : $return;
?>

Building Pizza On The Run

[56]

<h2>Login</h2>
<p>Login to repeat your last orders and speed up checkout.</p>

<form action="index.php" method="post">
<fieldset>
<input type="hidden" name="action" value="login" />
<input type="hidden" name="return" value="<?php
 echo $returnUrl; ?>" />

User: <input type="text" name="username" maxlength="15" value=
 "<?php echo $myUsername; ?>" />

Password: <input type="password" name="password" maxlength="15"
 value="<?php echo $myPassword; ?>" />

<input type="checkbox" value="1" name="remember"
 checked="checked" />Remember login details

<input type="submit" value="Login" />
</fieldset>
</form>

We allow saving the username and password in a cookie to automatically populate
fields from the cookie, next time. We are not using cookies for authentication; just to
store this information to make it faster to log in next time. Also, we do not want to
make it mandatory to log in to select products. This may be a roadblock in usability.
In the ordering process, we will give an option to register automatically if the user
wants. After the first order, she or he can log in either at the start, or while checking
out, and the delivery address will be auto-filled. We have provisioned for a return
URL in the login form so that we can redirect to that page on successful login.

Form Elements Don't Look the Same
Across Browsers
While the XHTML code for forms is same for standard web and mobile web, the way
form elements are rendered differs from browser to browser. Some browsers show
the select drop down as a list of radio buttons, some show it like a menu. If you use
<optgroup> in select options, some will render it as a nested menu.

Some browsers allow inline editing of text fields, some get into a full screen editing
mode. Many render large text boxes. We have already seen how forms render in
Openwave and Opera Mini. Check out the following screenshots of how the POTR
homepage and login form are rendered in different browsers.

Chapter 3

[57]

Here's a run down on the screenshots (from top left):

1.	 Opera Mini—test page—clicking to edit a text field
2.	 Opera Mini—test page—full screen text field editing
3.	 Opera Mini—test page—select drop down
4.	 Opera Mini—test page—full screen view of select options
5.	 Opera Mini—test page—text area, checkbox, and submit button activation
6.	 Motorola v3i—POTR homepage—navigation menu
7.	 Motorola v3i—POTR homepage—links, select drop down
8.	 Motorola v3i—POTR homepage—radio button style select drop

down rendering

Building Pizza On The Run

[58]

9.	 Motorola v3i—login form—inline text field editing
10.	 Sony Ericsson k750i—login form rendering
11.	 Sony Ericsson k750i—inline radio button style rendering of drop downs
12.	 Samsung Z105's rendering of select drop down & POTR homepage

The screenshot above shows how Openwave browser renders the POTR
homepage. It provides auto-completion by default on text fields, and you have
to activate editing by pressing the softkey. Select drop downs are shown on the
same screen.

The difference in form control rendering affects usability! Imagine a page with six
drop downs to select starting and ending dates. This is normal for a web application,
but will be very difficult for a mobile user. Radio buttons, checkboxes, and text boxes
are preferred controls for mobile forms. Links that pass parameters via GET are even
easier. Make sure you pick the right controls for your forms!

Form Processing Does not Change!
If you are overwhelmed by this, here's something that can bring you peace! Once
the form is submitted to the server, you can process it the same way as you do it on
standard web applications. Let's see the code that actually does the authentication in
login.inc.php to prove this!

<?php
if (isset($_POST["username"]) && isset($_POST["password"]))
{
 $userObj = new User();
 if($userObj->Login($_POST["username"], $_POST["password"]))
 {
 if ($_POST["remember"] == "1")
 {
 setcookie("potrUsername", $_POST["username"
], time()+(30*24*3600));

Chapter 3

[59]

 setcookie("potrPassword", $_POST["password"
], time()+(30*24*3600));
 }
 $_SESSION["userId"] = $userObj->id;
 if (isset($_REQUEST["return"]))
 {
 header("Location: ".$_REQUEST["return"]);
 }
 else
 {
 include("profile.inc.php");
 return;
 }
 }
 else
 {
 echo '<p class="error">Sorry, login failed. Please try again.</p>';
 }
}
?>

Isn't this how you would process a standard web form? We first check if we got the
username and password, and then let the User class handle the authentication. Once
verified, we set a cookie if the user opted to remember the login details. We then
redirect the user to a return URL if specified, or to the profile page. If we could not
verify, we show an error message. This PHP code is placed before the login form
XHTML code, so the username and password entered will be auto-filled if the login
failed. That's all!

Handling Sessions and User Login
We made the homepage and login script and showed it to Luigi. Luigi pulled up his
mobile browser and went ahead to log in. And then Murphy hit us! Luigi entered the
correct username and password, it showed him the profile page, but if he moved to
any other page, it would say he was not logged in! Murphy's law says that anything
that can go wrong will go wrong, and at the worst possible time. That time is
typically when your client is going to test the app. And then we learn!

Even though we are not using cookies for authentication, PHP uses a cookie to
store the Session ID. Without that cookie, the session cannot be retrieved and a new
session will be generated on each request. To our misfortune, not all mobile devices
support cookies. And if they do, they also have restrictions on the maximum number
of cookies or length of each cookie. There is a good enough reason behind this!
Mobile devices have limited storage and processing capacity. A cookie stores data in
text format at the client end. Cookies for a particular URL are sent with each request

Building Pizza On The Run

[60]

to that URL—which may not be feasible for a tiny browser. Most of today's mobile
browsers support cookies, but some need a WAP gateway between the client and the
server for cookies. The WAP gateway acts as a smart proxy—managing cookies and
any other information for the client.

We have two alternatives to deal with this. One, to support only browsers that can
accept cookies, and two, to remove the use of cookies in our application. Luigi does
not want to eliminate any users, so wants us to handle user sessions on our own.
(He never goes the easy way!)

Thankfully, we can still use PHP sessions. PHP works with session IDs stored
in cookies or passed as a request parameter. By default, session IDs are stored in
cookies. But we can pass them in the URLs to ensure our application works with
browsers that do not support cookies.

If your server allows customizing PHP configuration, you can have PHP
automatically insert session IDs in URLs and forms. Here's the magic piece of code
that gives us full session support without needing the browser to support cookies.
This code is written in a PHP file, but can be configured using the php.ini or
.htaccess file as well. Most shared hosting environments would support this.

ini_set("session.use_trans_sid", 1);
ini_set("url_rewriter.tags", "a=href,area=href,input=src,fieldset=");
ini_set("arg_separator.output","&");
session_start();

The first line enables transparent session ID support—a mighty PHP feature that can
add session ID to the tags you specify. The second line defines the tags that will be
rewritten to include session ID. For forms, we use the fieldset tag around form fields
to pass session ID with POST data automatically.

The third line about argument separators tells PHP to use & as the argument
separator in all links it generates. This configuration is essential to make your
documents XHTML MP compliant. PHP uses only & by default, and that will break
XHTML validation. The configuration affects only links that PHP will generate, and
not the ones we code. So, we still have to use & in the links we make.

Thankfully, the trick worked. And Luigi is back to normal after we did this fix!

Chapter 3

[61]

Handling Authentication can be Tricky
Managing sessions and cookies while working with mobile web browsers
can be tricky. As a matter of fact, consistently managing authentication
across different browsers has been very difficult for many people. We
have covered this section in detail to make you aware of the issues you
may face while building your own applications. We recommend testing
across simulators and real devices to ensure that authentication works as
expected in your applications.

Taking Orders
The core functionality of our system is to select pizzas and side dishes for an order.
The first step is to select the number of pizzas to order. Next is to customize each
pizza for size, crust, and toppings. We then let the user select side dishes and
beverages. Next is to take the delivery address and confirm the order.

Take a look at the following figure. It shows how the Openwave browser displays
the ordering process. You can then review the code that follows to learn how the
pages are constructed.

Here's the code for selecting pizzas.

<?php
// Load all product and variation information.
// categoryId 1 is for pizzas. We also show them in order of
// popularity by sorting them on priority

Building Pizza On The Run

[62]

$prodObj = new Product();
$products = $prodObj->GetAll("categoryId = 1", "priority asc");
// Variation Type could be Size / Crust / Toppings
$varObj = new Variation();
$varObj = $varObj->GetAll("", "type asc");
// numPizza is the total number of pizzas to order,
// numPizzaDone is the number of already selected pizzas
$currentPizza = $_REQUEST["numPizzaDone"]+1;
echo '<h2>Customize Your Pizza #'.$currentPizza.':</h2>
<form action="index.php" method="POST"><fieldset>
<input type="hidden" name="action" value="order" />';
// If this is the last pizza, move to step 2 on submission
if ($currentPizza == $_REQUEST["numPizza"])
{
 $step = 2;
}
else
{
 $step = 1;
}
echo '<input type="hidden" name="step" value="'.$step.'" />';
echo '<input type="hidden" name="numPizza" value="'.$_
 REQUEST["numPizza"].'" />';
echo '<input type="hidden" name="numPizzaDone"
 value="'.$currentPizza.'" />';

// Pass details of previously selected pizzas
if (is_array($_REQUEST["pizza"]))
{
 foreach ($_REQUEST["pizza"] as $key=>$prodId)
 {
 echo '<input type="hidden" name="pizza['.$key.']"
 value="'.$prodId.'" />';
 foreach($_REQUEST["variation"][$key] as $variationKey=>$varId)
 {
 echo '<input type="hidden" name="variation['.$key.'][
 '.$variationKey.']" value="'.$varId.'" />';
 }
 }
}
echo '<h3>Select the pizza</h3>';
// Select the first item by default, items are already
// sorted by priority of display
$checked = 'checked="checked"';
foreach($products as $product)

Chapter 3

[63]

{
 echo '<input type="radio" name="pizza['.$currentPizza.'
]" value="'.$product["id"].'" '.$checked.'/>';
 echo ''.$product["name"].' ($'.$product["price"].'
) - ';
 echo $product["description"].'
';
 $checked = '';
}
// Select the variations of this pizza now
$currentVariationType = "";
$currentVariation = -1;
foreach($varObj as $variation)
{
 if ($currentVariationType != $variation["type"])
 {
 $currentVariationType = $variation["type"];
 echo '<h3>Select the '.$currentVariationType.'</h3>';
 $currentVariation++;
 $checked = 'checked="checked"';
 }
 echo '<input type="radio" name="variation['.$currentPizza.'][
 '.$currentVariation.']" value="'.$variation[
 "id"].'" '.$checked.'/>';
 echo $variation["name"].' ($'.$variation["price"].')
';
 $checked = '';
}
// Inputs done, Show appropriate next action label for button
echo '<input type="submit" name="option" value="';
if ($step == 2) echo 'Sidedishes and Beverages';
else echo 'Select Pizza #'.($currentPizza+1);
echo '" /></fieldset></form>';
?>

Here's how we select the side dishes and beverages.

<?php
// Load side dishes and category information
$prodObj = new Product();
$products = $prodObj->GetAll("categoryId > 1", "
 categoryId asc, priority asc");
$catObj = new Category();
$categories = $catObj->GetAll();

echo '<h2>Select Side dishes and Beverages:</h2>
<form action="index.php" method="POST"><fieldset>
<input type="hidden" name="action" value="order" />

Building Pizza On The Run

[64]

<input type="hidden" name="step" value="3" />';

// Pass details of previously selected pizzas
if (is_array($_REQUEST["pizza"]))
{
 foreach ($_REQUEST["pizza"] as $key=>$prodId)
 {
 echo '<input type="hidden" name="pizza[
 '.$key.']" value="'.$prodId.'" />';
 foreach($_REQUEST["variation"][$key] as $variationKey=>$varId)
 {
 echo '<input type="hidden" name="variation['.$key.'][
 '.$variationKey.']" value="'.$varId.'" />';
 }
 }
}

$lastCategoryId = 0;
foreach($products as $info)
{
 // Show a menu category heading at start
 if ($info["categoryId"] != $lastCategoryId)
 {
 echo '<a name="'.$categories[$info["categoryId"]][
 "category"].'" />
 <h3>'.$categories[$info["categoryId"]]["category"].'</h3>';
 $lastCategoryId = $info["categoryId"];
 }
 // If priority is high, default to 1 quantity for the item, else 0
 $value = $info['priority'] < 3 ? 1 : 0;
 echo '<input name="sideItems['.$info['id'].']" type=
 "text" value="'.$value.'" size="3" maxLength="2" style=
 "-wap-input-format: \'2N\'; -wap-input-required: true"/
 >'.$info['name'].' ($'.$info['price'].')
';
}
echo '<input type="submit" name="option" value="Enter Address" />
 </fieldset></form>';
?>

Constraining User Input with WCSS
While entering the quantity of side dishes and beverages, we used a style to
constrain the user input.

style="-wap-input-format: \'2N\'; -wap-input-required: true"

The -wap-input-format style defines what can be entered into the field. In this case,
we allow up to two numeric characters.

Chapter 3

[65]

-wap-input-required sets whether the field is required or not. Not all browsers
support these properties consistently. But it's good practice to provide such
constraints at the user side in addition to server-side validation. Supporting mobile
browsers will change the input mode to numeric mode (or other) automatically
based on the input mask. This makes it very convenient for the user as she or he does
not have to keep changing input modes among form fields. The next two figures
show this CSS in effect in the Openwave browser.

-wap-input-format takes a format string as its value. This value becomes the input
mask for the field. The following table shows valid format characters.

Character Meaning
a Any lowercase letter or symbol.
A Any uppercase letter or symbol.
n Any numeric or symbolic character.
N Any numeric character.
x Any lowercase letter, numeric, or symbolic character.
X Any uppercase letter, numeric, or symbolic character.
m Any character. Browser input mode is set to lowercase by default.
M Any character. Browser input mode is set to uppercase by default.
* Wildcard: Zero or more characters of selected format. E.g. *x
2 (some number) Wildcard: Up to 2 (or the number) characters of the selected

format. E.g. 2N, 10m.

Building Pizza On The Run

[66]

You can apply this formatting only to text, password, and textarea fields. Here are
some examples of typical usage (and wrong usage).

Input Mask Meaning
NNNNN 5 numeric characters. E.g. Zip code.
10a Up to 10 lowercase characters. E.g. Username/password.
100m Up to 100 characters, input mode set to lowercase by default.
A*m First letter capital, then any number of characters. E.g. Name.
2N2N Wrong! You can use the wildcard character only once in the input mask.
A*aa Wrong! The wildcard format must be at the end of the mask. Correct use

is A*a.

If an invalid mask is assigned to -wap-input-format, the browser will ignore the
mask. You can include escaped characters in the input mask—put two backslashes
before the character to escape it. If the -wap-input-format and -wap-input-
required styles conflict with each other, -wap-input-required will have
precedence. So if your input mask is "N" (meaning one numeric character is required)
but -wap-input-required is set to false, empty input is OK for the field.

On POTR, once the side dishes are selected, we take the delivery address. We use CSS
classes to constrain the input for address fields, zip, and phone. Here's an example:

<style>
/* This should be in the CSS file for maximum compatibility */
.zip {
-wap-input-required: true;
-wap-input-format: "NNNNN"
}
</style>
Zip: <input type="text" name="zip" class="zip" value="<?php echo
$data["zip"]; ?>"/>

Single-Step Registration and Order
Placement on POTR
In the checkout process, we also allow the user to login so that the address can be
pulled from the registration information. If the user is not registered, she or he can
tick a checkbox to register with the entered address. The following code shows how
we register the user during checkout. Most of the work is done by two methods
provided in the BaseModel—PopulateFromArray() and Save().

<?php
// Save the order and register the user if opted for

Chapter 3

[67]

if ($_REQUEST["toRegister"] == 1)
{
 // Register the user
 $userObj = new User();
 $userObj->PopulateFromArray($_POST);
 if ($userObj->Save())
 {
 $msg = "Registered successfully.";
 $_SESSION["userId"] = $userObj->id;
 }
 else
 {
 echo '<p class="error">Could not register. Please
 try again.</p>';
 $data = $_REQUEST;
 // Include the address collection /
 // registration info page again
 include("order_step3.inc.php");
 return;
 }
}
?>

If everything is alright, we can go ahead and insert complete order details in the
database. The following code illustrates how we do this.

<?php
// We pass the products & variations objects to the order to refer to
// product pricing and names. Are needed for total calculation and
// order printing. The $orderDetail array contains the
// delivery address,
// userId, order time and order status
$orderObj = new Order($products, $variations, "orders", $orderDetail);
// If there are no selected items, can't proceed
if (!is_array($_SESSION["orderInfo"]["pizza"]))
{
 echo '<p class="error">Did not find any pizzas to
 order. Please select again!</p>';
 return;
}
// Add pizzas to the order
foreach ($_SESSION["orderInfo"]["pizza"] as $key=>$prodId)
{
 $itemData = array();
 $varData = array();

Building Pizza On The Run

[68]

 $itemData["productId"] = $prodId;
 $itemData["orderId"] = 0;
 foreach($_SESSION["orderInfo"]["variation"][
 $key] as $variationKey=>$varId)
 {
 $varData[]["variationId"] = $varId;
 $varData[]["orderItemId"] = 0;
 }
 // This will add orderItem and orderItemVariation
 $orderObj->addItem($itemData, $varData);
}
// Add Side dishes
foreach ($_SESSION["orderInfo"]["sideItems"] as $prodId=>$qty)
{
 $itemData = array();
 $itemData["productId"] = $prodId;
 $itemData["quantity"] = $qty;
 $itemData["orderId"] = 0;
 if ($qty > 0)
 {
 	$orderObj->addItem($itemData);
 }
}

// Save the order, and notify the user
// The Order class saves data to orders, orderItems and
// orderItemVariations
// tables. It also has a __toString() method which gives
// an HTML formatted
// output of the full order
if ($orderObj->Save())
{
 echo "<h2>Order Placed!</h2>";
 echo $orderObj;
 echo "<p>Your order will soon be on its way. Payment
 on delivery.</p>";
 $_SESSION["orderInfo"] = null;	
}
else
{
 echo "<p>Sorry, the order could not be placed. Please
 try again.</p>";
}
?>

That completes the ordering process! Luigi and his team will now make some
delicious pizzas and deliver them in a few minutes!

Chapter 3

[69]

Special Effects with CSS
Luigi wants to run discount offers on the mobile store. He also wants to display the
offers with some special effects! Since we can't be sure about how many people will
have Flash support in their mobile browsers, we need to do something simpler. We
can use animated GIFs to draw attention. But WCSS can do a few tricks that will
come to our rescue! We can slide some content and show it like a marquee. That
should make Luigi happy!

Here's the style sheet and XHTML code for creating a marquee.

<style>
/* This should be in the CSS file */
.offer {
 display: -wap-marquee;
 -wap-marquee-dir: rtl;
 -wap-marquee-style: slide;
 -wap-marquee-loop: 5;
 -wap-marquee-speed: slow
}
</style>
<div class="offer">
<img src="assets/pep_spice_offer.jpg" alt="Pepperoni Spice at
 just $7!" width="200" height="100" />
</div>

The style definition should be in a CSS file for maximum compatibility. The style
properties themselves are self-explanatory! The mandatory property to create a
marquee is "display: -wap-marquee". Applying that style to any element will slide
it from right to left at normal speed once. The following figure shows the marquee in
a Nokia browser.

Building Pizza On The Run

[70]

Use marquees with caution! We wouldn't advise Luigi to use this more than once
on the site! Use a marquee to draw attention, but ensure it does not go on too long
to bore or distract the user. We don't want people to get busy looking at animations!
We want them to order pizzas!

Luigi's Pizza On The Run is Live!
After many nights with XHTML, WCSS, PHP, and a dozen assorted pizzas, Luigi's
POTR can go live now. The ordering process is in place. Users can register and
auto-fill address after logging in. The menu is in place and we can show high-selling
items at the top by setting priorities. We haven't done the code to repeat orders yet,
but that can wait for a future version!

Luigi took a test drive of POTR and was thrilled. He especially liked how an order
can be placed without much thinking! Orders make him happy!

There are a few glitches though. The site does not look perfect on all the browsers.
We need to do something to adapt content according to different browsers. Luigi has
also asked for a feature to show pizza images on phones with larger screens. Friends
who started using the app have requested SMS features as well. Let's bunch them all
up, and implement them in the next few chapters!

Summary
We did so much! We learned fundamentals of designing mobile web applications.
And we created a solid Pizza On The Run application. Specifically, we learned:

Mobile devices come in variety of screen sizes. Selecting the right size for
development depends on the target devices.
Newer devices have larger screens and good small screen rendering
techniques. Normal sites too display well on them. Yet, the majority of
devices can't do this. It makes sense to develop a mobile-specific version of
your application.
Web layouts don't work on mobile browsers—we need to show things in
vertical blocks.
Wireless CSS is similar to standard CSS and perfect to manage the design of
mobile websites.
CSS and forms render differently on different browsers.
We also designed the Classes, Database schema, and Coding Framework
for POTR.

•

•

•

•

•

•

Chapter 3

[71]

Ordered list is useful for navigation; the accesskey attribute allows quick
activation of links.
Form handling on the server does not change!
Handling sessions and user login requires understanding the target browsers
and the server-side programming technology.
We also implemented a mobile-friendly ordering process for POTR.
We can constrain user input with WCSS.
WCSS can also be used to show simple marquee animations.

In the next chapter, we will see how we can adapt our site to different mobile
devices. Get yourself a pizza till then!

•

•

•

•

•

•

Adapting to User Devices
Luigi's Pizza On The Run mobile shop is working well now. And he wants to adapt
it to different mobile devices. Let us learn that in this chapter! And specifically, let's
look at:

Understanding the Lowest Common Denominator method
Finding and comparing features of different mobile devices
Deciding to adapt or not.
Adapting and progressively enhancing POTR application using Wireless
Abstraction Library
Detecting device capabilities
Evaluating tools that can aid in adaptation
Moving your blog to the mobile web

By the end of this chapter, you will have a strong foundation in adapting to
different devices.

What is Adaptation?
As we discussed in Chapter 1, adaptation, sometimes called multiserving, means
delivering content as per each user device's capabilities. If the visiting device is an
old phone supporting only WML, you will show a WML page with Wireless Bitmap
(wbmp) images. If it is a newer XHTML MP-compliant device, you will deliver an
XHTML MP version, customized according to the screen size of the device. If the
user is on iMode in Japan, you will show a Compact HTML (cHTML) version that's
more forgiving than XHTML. This way, users get the best experience possible on
their device.

•

•

•

•

•

•

•

Adapting to User Devices

[74]

Do I Need Adaptation?
I am sure most of you are wondering why you would want to create so
many different versions of your mobile site? Isn't following the XHTML MP
standard enough?

On the Web, you could make sure that you followed XHTML and the site will
work in all browsers. The browser-specific quirks are limited and fixes are easy.
However, in the mobile world, you have thousands of devices using hundreds of
different browsers.

You need adaptation precisely for that reason! If you want to serve all users well,
you need to worry about adaptation. WML devices will give up if they encounter
a tag within an <a> tag. Some XHTML MP browsers will not be able to process
a form if it is within a table. But a table within a form will work just fine. If your
target audience is limited, and you know that they are going to use a limited range of
browsers, you can live without adaptation.

Can't I just Use Common Capabilities and
Ignore the Rest?
You can. Finding the Lowest Common Denominator (LCD) of the capabilities of
target devices, you can design a site that will work reasonably well in all devices.
Devices with better capabilities than LCD will see a version that may not be very
beautiful but things will work just as well.

As a matter of fact, this is what we did in the last chapter. We decided to support
only XHTML MP devices. To render across all screen sizes and handle sessions on
our own, we decided to keep the page size down and use only basic WCSS. Most
people take this approach because it's easier and faster. In Chapter 1, we saw the
capabilities W3C has listed as the Default Delivery Context—or the minimum
expected features. We can use that as our LCD and design our mobile site.

How to Determine the LCD?
If you are looking for something more than the W3C DDC guidelines, you may be
interested in finding out the capabilities of different devices to decide on your own
what features you want to use in your application. There is a nice tool that allows
you to search on device capabilities and compare them side by side. Take a look at
the following screenshot showing mDevInf (http://mdevinf.sourceforge.net/)
in action, showing image formats supported on a generic iMode device.

Chapter 4

[75]

You can search for devices and compare them, and then come to a conclusion about
features you want to use.

This is all good. But when you want to cater to wider mobile audience, you
must consider adaptation. You don't want to fight with browser quirks and silly
compatibility issues. You want to focus on delivering a good solution. Adaptation
can help you there.

OK, So How do I Adapt?
You have three options to adapt:

1.	 Design alternative CSS: this will control the display of elements and images.
This is the easiest method. You can detect the device and link an appropriate
CSS file.

2.	 Create multiple versions of pages: redirect the user to a device-specific
version. This is called "alteration". This way you get the most control over
what is shown to each device.

3.	 Automatic Adaptation: create content in one format and use a tool to
generate device-specific versions. This is the most elegant method.

Adapting to User Devices

[76]

Let us rebuild the pizza selection page on POTR to learn how we can detect the
device and implement automatic adaptation.

Fancy Pizza Selection
Luigi has been asking to put up photographs of his delicious pizzas on the mobile
site, but we didn't do that so far to save bandwidth for users. Let us now go ahead
and add images to the pizza selection page. We want to show larger images to
devices that can support them.

Remember the XHTML to invoke a phone call? The two approaches of using wtai
and tel? Some customers have complained that they were not able to make a call
using that link. The cause is that their browsers did not understand the tel link. Let
us adapt that so that the user gets the markup her or his browser can understand!

Review the code shown below. It's an abridged version of the actual code.

<?php
include_once("wall_prepend.php");
?>
<wall:document><wall:xmlpidtd />
 <wall:head>
 <wall:title>Pizza On The Run</wall:title>
 <link href="assets/mobile.css" type="text/css" rel="stylesheet" />
 </wall:head>
 <wall:body>
<?php
echo '<wall:h2>Customize Your Pizza #'.$currentPizza.':</wall:h2>
<wall:form enable_wml="false" action="index.php" method="POST">
<fieldset>
<wall:input type="hidden" name="action" value="order" />';

// If we did not get the total number of pizzas to order,
// let the user select
if ($_REQUEST["numPizza"] == -1)
{
 echo 'Pizzas to Order: <wall:select name="numPizza">';
 for($i=1; $i<=9; $i++)
 {
 echo '<wall:option value="'.$i.'">'.$i.'</wall:option>';
 }
 echo '</wall:select><wall:br/>';
}
else
{

Chapter 4

[77]

 echo '<wall:input type="hidden" name="numPizza" value="'.$_
REQUEST["numPizza"].'" />';
}

echo '<wall:h3>Select the pizza</wall:h3>';
// Select the pizza
$checked = 'checked="checked"';
foreach($products as $product)
{
 // Show a product image based on the device size
 echo '<wall:img src="assets/pizza_'.$product[
 "id"].'_120x80.jpg" alt="'.$product["name"].'">
 <wall:alternate_img src="assets/pizza_'.$product[
 "id"].'_300x200.jpg" test="'.($wall->getCapa(
 'resolution_width') >= 200).'" />
 <wall:alternate_img nopicture="true" test="'.(
 !$wall->getCapa('jpg')).'" />
 </wall:img><wall:br />';
 echo '<wall:input type="radio" name="pizza[
 '.$currentPizza.']" value="'.$product["id"].'" '.$checked.'/>';
 echo ''.$product["name"].' ($'.$product[
 "price"].') - ';
 echo $product["description"].'<wall:br/>';
 $checked = '';
}
echo '<wall:input type="submit" class="button" name=
 "option" value="Next" />
</fieldset></wall:form>';
?>
 <p><wall:a href="?action=home">Home</wall:a> - <wall:caller
tel="+18007687669">+1-800-POTRNOW</wall:caller></p>
 </wall:body>
</wall:html>

What are Those <wall:*> Tags?
All those <wall:*> tags are at the heart of adaptation. Wireless Abstraction Library
(WALL) is an open-source tag library that transforms the WALL tags into WML,
XHTML, or cHTML code. E.g. iMode devices use
 tag and simply ignore
. WALL will ensure that cHTML devices get a
 tag and XHTML devices get

. You can find a very good tutorial and extensive reference material on WALL
from: http://wurfl.sourceforge.net/java/wall.php. You can download WALL
and many other tools too from that site.

WALL4PHP—a PHP port of WALL is available from http://wall.laacz.lv/.
That's what we are using for POTR.

Adapting to User Devices

[78]

Let's Make Sense of This Code!
What are the critical elements of this code? Most of it is very similar to standard
XHTML MP. The biggest difference is that tags have a "wall:" prefix. Let us look at
some important pieces:

The wall_prepend.php file at the beginning loads the WALL class, detects
the user's browser, and loads its capabilities. You can use the $wall object in
your code later to check device capabilities etc.
<wall:document> tells the WALL parser to start the document code. <wall:
xmlpidtd /> will insert the XHTML/WML/CHTML prolog as required. This
solves part of the headache in adaptation.
The next few lines define the page title and meta tags. Code that is not in
<wall:*> tags is sent to the browser as is.
The heading tag will render as a bold text on a WML device. You can use
many standard tags with WALL. Just prefix them with "wall:".
We do not want to enable WML support in the form. It requires a few more
changes in the document structure, and we don't want it to get complex for
this example! If you want to support forms on WML devices, you can enable
it in the <wall:form> tag.
The img and alternate_img tags are a cool feature of WALL. You can
specify the default image in the img tag, and then specify alternative images
based on any condition you like. One of these images will be picked up
at run time. WALL can even skip displaying the image all together if the
nopicture test evaluates to true. In our code, we show a 120x100 pixels
images by default, and show a larger image if the device resolution is more
than 200 pixels. As the image is a JPG, we skip showing the image if the
device cannot support JPG images. The alternate_img tag also supports
showing some icons available natively on the phone. You can refer to the
WALL reference for more on this.
Adapting the phone call link is dead simple. Just use the <wall:caller> tag.
Specify the number to call in the tel attribute, and you are done. You can
also specify what to display if the phone does not support phone links in
alt attribute.

•

•

•

•

•

•

•

Chapter 4

[79]

When you load the URL in your browser, WALL will do all the heavy lifting
and show a mouth-watering pizza—a larger mouth-watering pizza if you have
a large screen!

Can I Use All XHTML Tags?
WALL supports many XHTML tags. It has some additional tags to ease menu
display and invoke phone calls. You can use <wall:block> instead of <p> or <div>
tags because it will degrade well, and yet allow you to specify CSS class and id.
WALL does not have tags for tables, though it can use tables to generate menus.
Here's a list of WALL tags you can use:

a, alternate_img, b, block, body, br, caller, cell, cool_menu, cool_menu_css,
document, font, form, h1, h2, h3, h4, h5, h6, head, hr, i, img, input, load_capabilities,
marquee, menu, menu_css, option, select, title, wurfl_device_id, xmlpidtd.

Complete listings of the attributes available with each tag, and their meanings are
available from: http://wurfl.sourceforge.net/java/refguide.php.

Adapting to User Devices

[80]

Will This Work Well for WML?
WALL can generate WML. WML itself has limited capabilities so you will be
restricted in the markup that you can use. You have to enclose content in <wall:
block> tags and test rigorously to ensure full WML support. WML handles user
input in a different way and we can't use radio buttons or checkboxes in forms. A
workaround is to change radio buttons to a menu and pass values using the GET
method. Another is to convert them to a select drop down. We are not building
WML capability in POTR yet.

WALL is still useful for us as it can support cHTML devices and will automatically
take care of XHTML implementation variations in different browsers. It can even
generate some cool menus for us! Take a look at the following screenshot.

Device Detection and Capabilities
We looked at what WALL can do and how easy it is to implement it. But how
does it do that? WALL, and many other open-source (and commercial) tools use
WURFL—Wireless Universal Resource File. The mDevInf tool that we saw earlier
in this chapter is entirely based on WURFL. WURFL is a massive XML file, listing
capabilities of all known mobile devices (almost!). It is actively maintained
and also derives information from UAProf—another standard for managing
device capabilities.

Chapter 4

[81]

At the heart of any device detection is the User Agent header sent by the browser. All
device detection techniques check the User Agent ($_SERVER['HTTP_USER_AGENT']
variable for PHP) and look up their database to find the characteristics of that device.

Here are some of the things WURFL can tell you about a device:

Screen size of the device
Supported image, audio, video, ringtone, wallpaper, and screensaver formats
Whether the device supports Unicode
Is it a wireless device? What markup does it support?
What XHTML MP/WML/cHTML features does it support? Does it work
with tables? Can it work with standard HTML?
Does it have a pointing device? Can it use CSS?
Does it have Flash Lite/J2ME support? What features?
Can images be used as links on this device? Can it display image and text on
the same line?
If this is an iMode phone, what region is it from? Japan? US? Europe?
Does the device auto-expand a select drop down? Does it have inline input
for text fields?
What SMS/MMS features are supported?

The list goes on. But you can make some intelligent decisions in your application
based on the device now. You can even conditionally print <wall> tags. E.g. show a
download link only if the device has download support.

WURFL API is available in many programming languages, including Java, PHP, .Net,
Ruby, and Python. You can download it from: http://wurfl.sourceforge.net/.

XML Processing can Bog Down My Server, is There
Something Easier?
Yes! The WURFL XML file is above 4MB, and despite many structural optimizations,
processing it on every request will certainly slow down your server. Many APIs
provide caching to speed things up. But having this available in a database will be best.
Tera-WURFL is a PHP package that uses MySQL to store WURFL data. It bundles
WALL and an admin panel—making it the top choice for mobile web adaptation.

Setting up Tera WURFL involves downloading the latest package from
http://www.tera-wurfl.com/, extracting the files and entering the database
connection information in the configuration file. It will load up the device data to
the database and can start serving WALL pages.

•

•

•

•

•

•

•

•

•

•

•

Adapting to User Devices

[82]

What About W3C's DIAL?
W3C's DIAL (Device Independent Authoring Language) is a combination of
XHTML 2, XForms, and DISelect. DIAL (http://www.w3.org/TR/dial/) was
created to develop a language that will allow consistent delivery across devices and
contexts. Though the language is new, it's getting a good response and is something
to keep track of!

Other Useful Tools for Adaptation
Adapting a site for different devices goes beyond markup generation. Commercial
tools such as Changing Worlds, Dynetic, and Volantis do a good comprehensive job
in adaptation. Let us look at some more interesting open-source tools in this area.

Dynamically Resizing Images
If we can generate markup code dynamically, we might as well resize images
dynamically! Maybe we can detect the screen size using WURFL and write logic that
will resize a large image to fit the device screen. This will increase the load on the
server a little bit as we resize the image, but we can save the image to disk for later
usage and manage the additional load. This will cut down on the chore of resizing
images for different resolutions every time we add one.

There are a few ready libraries that work with WURFL and can resize images and
even change their format.

GAIA Image Transcoder (http://wurfl.sourceforge.net/utilities/gaia.php)
is one such tool in Java. It even lets you define regions of interest to help in preview
and place on the image.

PHP Image Rendering Library (http://wurfl.sourceforge.net/utilities/
phpimagerendering.php) is another implementation in PHP.

Image Server (http://wurfl.sourceforge.net/utilities/imageserver.php)
can work as a filter for your Java server, optimizing images without a trace of what's
happening to the user!

Quick and Easy Way to Make Your Blog Mobile
If the job at hand is to make a mobile web version of a blog, you can do it in a
matter of minutes! FeedBurner (http://www.feedburner.com) and Feed2Mobile
(http://feed2mobile.kaywa.com/) take the RSS feed from your blog and show it
in a mobile-friendly manner. Users just point to the new URL and they can access
your mobile blog!

Chapter 4

[83]

If you want full control, and want to set up something on your blog itself, head for
Mobile Web Toolkit (http://www.beeweb.com). MWT's WordPress plug-in can get
your blog mobile within 10 minutes. MWT allows you to customize what widgets
show up to users of different browsers in a friendly AJAX editor. Plug-ins for other
content management systems are on their way. MWT is a very interesting concept
and advocates delivering a rich experience to mobile users, rather than restricting
them with some lowest common denominator design.

On the other hand, many content management systems have now started supporting
versions adapted to mobile devices. By the time this book goes to print, all major
CMS will have mobile web support.

MyMobileWeb: Going the Semantic Way
MyMobileWeb (http://forge.morfeo-project.org/) is a Java-based open-source
tool to build .mobi-compliant websites. It is a comprehensive framework that uses
declarative XML to build the presentation layer (very similar to WALL) and an MVC
architecture for handling various events.

MyMobileWeb is an ambitious project. The team is working on semantic mobile web,
context awareness and mobile AJAX. Some of the features that may interest you:

It does not do markup transcoding at run time, but generates device-specific
pages at publish time. This gives better performance.
The visual controls are defined through a declarative language and can
interoperate with JSTL for dynamism. They are also rendered based on the
context or rules that we can specify.
The framework comes with ready visual controls for layouts, date control,
RSS etc. It can even do binding of visual controls with data, and can generate
a grid to display data and paginate.
You get control over the visual aspects—CSS, alternatine content, hiding
pages based on device, etc.
It has a validation framework that can work on both client side and server
side depending on scripting support at the client.
Comes with an Eclipse plug-in!

•

•

•

•

•

•

Adapting to User Devices

[84]

HAWHAW: As Simple as a Laugh?
HAWHAW (http://www.hawhaw.de/) has a funny acronym, but is a great idea.
It stands for HTML And WML Hybrid Adapted Webserver. HAWHAW is an
open-source script written in PHP. You can create HAWHAW pages via PHP or
XML. But the interesting thing about it is that it can even generate VoiceXML output.
So not only can you build your standard and mobile website with it, you can even
have people call in a number and do a complete interactive voice response system.
You can even get some ideas from the HAWHAW implementation and build
something of your own.

Summary
In this quick chapter, we learned when to adapt and how to adapt our mobile site to
different devices. Specifically:

We learned about the Lowest Common Denominator method, finding and
comparing features of different mobile devices and deciding to adapt or not.
We extended the Pizza On The Run application to adaptively display content
using Wireless Abstraction Library.
We saw how adaptation works in different browsers.
We learned about WURFL and how it can be used to adapt based on
browser capabilities.
We reviewed tools that can aid in adaptation—Tera WURFL, MyMobileWeb,
Mobile Web Toolkit, Image Server, GAIA Image Transcoder, and
HAWHAW.

One note of caution! Do not over-constrain the content. Users expect the same kind
of experience on the mobile that they have on the Web. As mobile web developers,
we must strive to bridge the gap, not widen it.

In the next chapter, we will review the best practices of mobile web development: the
standards and the opinions!

•

•

•

•

•

Developing Standards-
Compliant Sites

The variety of device capabilities is one of the biggest constraints in mobile web
development. In this chapter, we will learn about developing standards-compliant
sites and in the process learn essential tricks in delivering the best experience to
the users.

We will specifically look at:

Running the ready.mobi test on your site
Creating the structure, design, markup, and navigation for best user experience
Collecting user behavior data to keep enhancing the site

After the adaptation work we did in the last chapter, Luigi is ready to roll out the
Pizza On The Run mobile site to a wider audience. He's got ideas for making POTR
more interactive (Web 2.0 style) and utilizing phone capabilities. But before we can
do all that, we need to ensure that our site follows the best practices of mobile
web development.

So let's go ahead and get POTR to the pit!

Running the ready.mobi Test
We could learn all the standards and best practices before we start development.
But what's the fun in success if there were no failures behind it? So, how can we find
out how badly (or well) we are doing in terms of mobile web best practices? Simple!
Run the ready.mobi test on it! Ready.mobi is an online service that can review
your mobile website and give feedback on a variety of aspects—XHTML, images,
download sizes, etc. Let's see how our current site does on the ready.mobi test!

•

•

•

Developing Standards-Compliant Sites

[86]

Time for Action: Test Your Site's Mobile Readiness
with the ready.mobi Test

1.	 Upload your site to a server, so that it can be accessed using a public URL.
2.	 Access it from your browser/emulator to ensure the site loads and works

without any errors.
3.	 Open http://ready.mobi/ in your browser. Enter your site address in the

form and submit.
4.	 On the next page, you will see the ready.mobi report as shown in the

following screenshot.

Chapter 5

[87]

5.	 Check the overall readiness score as well as the speed test results. You can
also review how your page will look on devices in the Visualization section.
Take a look at the next screenshot, that demonstrates this.

6.	 Check if you have any fails—indicated by red marks. If you have no red
signs, go ahead, make your site live. Don't forget to tell all your friends about
your latest venture! On the other hand, if you do have fails, you may want to
fix them before going live!

Developing Standards-Compliant Sites

[88]

7.	 We have two fails, resulting from the "name" attribute on <a> in our code,
because the name attribute is not supported by the XHTML MP DTD we are
using. The following screenshot shows the note about compliance test failure.
This is a common mistake that we talked about in an earlier chapter. The
solution is to use "id" attribute instead of "name" for identifying
the anchors.

So What is Happening?
This is a comprehensive test that validates the page at the URL you entered. It
validates against the XHTML MP standard, and .mobi's best practices of mobile web
development. ready.mobi is an excellent tool to check how much time your page will
take to load, whether it will render well across different browsers, and even whether
it is semantically well constructed for mobile users.

You can validate only one page with ready.mobi. So you will have to
enter page addresses one by one to test your whole site.

Chapter 5

[89]

Click inside one of the emulators to give focus to them. Now, navigate
your site using just the keyboard. This will give you a good idea of how
most mobile users will be accessing your site.

The following screenshot shows a list of tests ready.mobi runs apart from the
standards-compliance tests. In the report, clicking on any item will open up notes
about that test. This is a great way to explore and learn the best practices of mobile
web development.

Now that we know how to run this test, let us review recommendations and best
practices of mobile web development.

Creating the Structure, Design, Markup,
and Navigation for Best User Experience
Learning XHTML and developing mobile sites is not that difficult. The real problems
come when you want to ensure that the site works well across different devices.
Adaptation certainly helps in the process, but if you know the pitfalls, your ride can
be smoother.

Developing Standards-Compliant Sites

[90]

There are a few notable efforts in the mobile web space that come up with best
practices and recommendations.

W3C Mobile Web Best Practices Basic Guidelines (http://www.w3.org/TR/
mobile-bp/)
Luca Passani's Global Authoring Practices (http://www.passani.it/gap/)
OpenWave's Guidelines about XHTML Design (http://developer.
openwave.com/dvl/support/documentation/guides_and_references/
best_practices_in_xhtml_design/index.htm)
Opera's Making Small Devices Look Great (See http://my.opera.com/
community/dev/device/)

You should go through the best practices above for a deeper understanding of
the rationale behind each recommendation. For this chapter, we have developed
checklists you can use on your projects. These checklists come from the
recommendations above as well as our experience in developing mobile and
web applications.

Mobile Web Development Checklists
You can create your own version of these checklists, print them, and review them
on your mobile web projects. Just keep checking off what's done, and understand
what more can be done. The checklists are grouped by sections for easy reference.

Strategy
Why mobile?
Target users identified
User goals defined, and task oriented
Short URL for the homepage. No www. Maybe new subdomain
User browser detection and delivering appropriate content
Consistent delivery across devices
Can something still be taken out of the page? Stay lean!

Testing Setup
Testing in web browser
Testing with 5 device emulators
Testing with 2 real devices
Testing with real users

•

•
•

•

•
•
•
•
•
•
•

•
•
•
•

Chapter 5

[91]

Structure and Page Information
Uses correct encoding—UTF-8 by default
Sends correct XHTML doctype
No frames, no pop-ups
Page redirects on the server side, unless application needs it
Short yet descriptive title for all pages
Is the page structure understandable? Flows naturally?
Minimum external resources (CSS, images, etc.)

Design and CSS
Target resolution?
Is high color contrast maintained?
Usable with background images off?
No tables, unless device support is guaranteed
No nested tables, no tables for layout
Textual representation of all non text elements (images, media, etc.)
No pixel-based designs, use relative measures like em
CSS for design
No extraneous CSS code
Font agnostic design
Works with CSS off
Uses lists for structure—ol, ul, dl
Small icons are good, used where needed
Consistent color theme across the site
No wasted vertical space
Uses blocks for page elements
Background color to distinguish different blocks
Unimportant text in gray color

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Developing Standards-Compliant Sites

[92]

Images
No images without alt tag
Tested with images turned off
Image size according to device size
Image size specified in XHTML
Image resizing on the server, not at client
No spacer images
No image maps

Navigation and Links
Shortest click-stream possible for each task
No navigation bar in the header
Check: is breadcrumb navigation adding value? Really?
Most important links at the top
Home, Contact, and few more important links in footer
accesskey for important links in the page
No more than 10 links on a page
Clear, action-oriented label on each link
Hide links to unsupported document types
Site search in footer if needed
Google sitemap present
Links are search-engine friendly—avoid GET parameters via ? and &

Content
Maximum 5 scrolls long
No splash pages
No stub pages without actual content or with links only
Important content at top
Clear and concise language for content
Error messages, in the same language as content
No unrelated content—check: will the user want it?
Scrolls in one direction only, unless application needs secondary scroll

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 5

[93]

Markup
Is the markup valid?
No redundant markup; must be tidy
Total page size (including markup, images, CSS) less than 20K
XHTML is semantic, e.g. no h2 before h1
Uses XHTML code for formatting, aided by CSS
Minimal form elements, especially select boxes

User Input
Avoids free text entry where possible
Default selections/values as much as possible
Default input mode, format, and language for fields
Password field as input type="text", not input type="password", unless high
security is needed

Objects, Security, Caching, Etc.
No scripting without device detection + alternative
No embedded objects without device detection + alternative
Works without cookies
Cache-Control header as per application need
Pass session ID in URL
Not mandatory to log in to see content, unless application requires so
Phone numbers are linked to invoke call

Best Practices should be Upgraded!
When you develop your applications, you may keep the target devices and target
users above the best practice recommendations. Best Practices are opinions and you
will see arguments for and against some of the controversial items. You can come up
with your own rules thumb of and tricks. Start with the items here, try them out on
your projects, and keep evolving them.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Developing Standards-Compliant Sites

[94]

Most Good Styles of Design and Software will
Work on the Mobile Web Too
The mobile web is just another platform of delivering information. All good usability
practices, graphic design patterns, and software development practices you have
learned so far are still applicable to the mobile web. They are actually a base that you
build your mobile development patterns on.

What's most important for any application is that it serves user needs. We may
develop a mobile website, but the users may find it very difficult to use it. We can
wait for them to send us complaints or be proactive and try to find out if they are
having problems.

Luigi is very sensitive about his customers, so he wants to find out if they are having
any troubles. So after applying all the best practices, we still want to put in place
a routine to track user behavior and provide an opportunity to them to give us
feedback. Let us see how we can do this.

Collecting User Behavior Data
We could follow all the best practices of mobile development. But what if we become
proactive and try to understand how the user uses our application? If we track
the pages our users are visiting, and how much time they are spending on each,
we can get a fair sense of how the application is working for them. If we also track
the browser data and some other application parameters, we will get a reasonably
good picture of what's working and what's not working. If we find out that most
of our users do not go past the first page in the ordering process, we know there is
something wrong. We need to simplify the workflow.

Collecting user behavior data can allow us to generate intelligence out of the data. It
will help us evolve our best practices and increase user satisfaction. Now we can use
the web server logs for tracking page views. But we get full flexibility with our own
tracking system. How can we set up a simple tracking system for POTR? The job is
very easy for us because we have a centralized architecture. Let's see how we can do it.

Time for Action: Implementing User Tracking
1.	 Create a new table in the database. The following code shows the schema.

You may use phpMyAdmin or any other database administration tool to
do this.

	 CREATE TABLE `trackingdata` (
	 `id` int(10) unsigned NOT NULL auto_increment,
	 `userId` int(10) unsigned NOT NULL,

Chapter 5

[95]

	 `sessionId` varchar(40) NOT NULL,
	 `accessTime` timestamp NOT NULL default CURRENT_TIMESTAMP,
	 `action` varchar(20) NOT NULL,
	 `page` varchar(255) NOT NULL,
	 `referer` varchar(255) NOT NULL,
	 `browser` varchar(200) NOT NULL,
	 `timeSpent` int(6) unsigned NOT NULL,
	 `vars` text NOT NULL,
	 PRIMARY KEY (`id`)
) ;

2.	 Open up prepend.inc.php. We will write a function to collect tracking
information and insert it into the trackingData table.

3.	 Add the following logUserTrail() function in prepend.inc.php—add it
after the debug() function definition. In the function, we insert the current
request URI, all the variables associated with it, the last page, etc. into the
table. We also save the ID of the tracking data item into the session. In the
next call to this function, when we find the tdId, we update that record
with the time spent on that page—which will be the current time minus
accessTime for that request.

	 function logUserTrail()
	 {
 $userId = isset($_SESSION['userId']) ? $_SESSION['userId'] : 0;
 $page = "http://".getenv('HTTP_HOST').getenv('REQUEST_URI');
 // If trackingId of last request is set, update its timeSpent
 if (isset($_SESSION['tdId']))
 {
 $query = "UPDATE trackingData SET timeSpent =
 NOW() - accessTime WHERE id = '".$_SESSION['tdId']."'";
 $GLOBALS['db']->Query($query);
 }
 // Insert current request information in trackingData
 $query = "INSERT INTO trackingData (userId, sessionId, action,
 page, referer, browser, vars)
 VALUES ($userId, '".$_REQUEST["PHPSESSID"]."', '".$_
 REQUEST['action']."', '$page',
	 '".getenv('HTTP_REFERER')."', '".getenv(
 'HTTP_USER_AGENT')."', '".serialize($_REQUEST)."')";
 $GLOBALS['db']->Query($query);
 $_SESSION['tdId'] = $GLOBALS['db']->GetCurrentId();
	 }

Developing Standards-Compliant Sites

[96]

4.	 Now open index.php and call the function we just wrote. We should do it
before including the action file.

	 $action = isset($_REQUEST["action"]) ? $_REQUEST["action"] : "home";
	 $file = $action . ".inc.php";
	 logUserTrail();
	 if (in_array($action, $validActions) && is_file($file))
	 {
	 include($file);
	 }

5.	 Now access the POTR site. Browse around on a few pages. Confirm that the
data is inserting into the table through your favorite administration tool.

6.	 Our tracking mechanism is now in place. After a few requests, doing a
query like SELECT userId, action, timeSpent, browser, vars from
trackingData may give an output similar to what is shown in the next
screenshot. Notice the vars field gives us values that tell us the exact action
the user was trying to perform. In the highlighted case, a non logged in user
was on the first step of the order process, and spent 4 seconds on it.

Chapter 5

[97]

How is All the Data Tracked?
The logUserTrail() function gets called on every request to our site. In the function,
we can get the current page and last page links using the HTTP_REQUEST_URI and
HTTP_REFERER server-side variables. We are storing the session and user IDs so that
we can run queries on them later. The serialize() function takes all the variables
in the current request and converts them into a string. This will allow us to track the
actual step in the order process or the address the user was entering.

We can now query the collected data and get insights into how customers are using
our application. Some interesting queries could be:

Find all exit pages: SELECT * FROM trackingData WHERE timeSpent = 0
Find pages slow to process for the user: SELECT * FROM trackingData WHERE
timeSpent > 20.
Find popular modules: SELECT action, count(*) as total FROM
trackingData GROUP BY action ORDER BY total DESC.

Covering Problem Areas
We are just tracking successful requests in the current process. If we add an HTTP
error handler page, we can also track causes of HTTP errors like 404, 500 or others.
We can also add an exception/error handler in PHP, which can track the source of
problems in PHP code as well. This data can be linked to the session/user ID and we
can have a complete picture of what was happening when the error occurred.

Tapping into the Device Data
We are tracking the user's browser. We can link it up with the WURFL data we have
and generate insights into which devices are used most, what are their capabilities,
and how can we exploit them.

Making it Easier to Ask for Help
Despite all this, if the user faces a problem, we want to make it easier to ask for
support. This can be done simply by creating a feedback page, and linking it up from
the footer navigation. The form will allow the user to add comments, will include the
tracking data ID, and send us an email with full details.

We are not including code for this here! You can build it on your own, or check it out
in the source code you may download from the book website.

•

•

•

Developing Standards-Compliant Sites

[98]

Luigi, our dear client, is very excited with all this. We mentioned that he wants to
add many interactive features to POTR now. But before that, let's see what we did in
this chapter.

Summary
In this chapter, we focussed on what we should do to ensure that our mobile site is
delivered well to most customers. Specifically:

We tested POTR with ready.mobi. We saw the different tests it carries out
and notes it shows. It's not necessary to fix all problems, but it helps!
We also saw the different recommendations and best practices about mobile
web development. We referenced W3C's Mobile Web Best Practices, Luca
Passani's Global Authoring Practices, and built a checklist we can use on our
projects.
Following recommendations may not be enough. We started tracking user
data on POTR through our central index.php file.

In the next chapter, we will look at how we can push updates to customers via SMS.
Luigi has been pushing for this feature for quite some time, and we are now ready to
take it up!

•

•

•

Sending Text Messages
SMS-based applications have taken the mobile world by a storm. According to
research, there are two types of mobile users: texters and talkers. It was observed
that the texters send more than double the messages that talkers do. SMS for them is
a non-obtrusive way of communication.

In this chapter, we will learn about sending text messages, and in the process learn
the fundamentals of using third-party services for messaging.

We will specifically take look at:

Updating order status for POTR
Selecting an SMS gateway provider and setting up an account
Sending text messages using the gateway's API
Understanding how SMS is delivered
Getting delivery status updates
Setting up our own SMS gateway
Sending bulk messages

We have almost completed the XHTML MP part of POTR and Luigi wants to
build more interaction into the system now. He wants to send order updates to the
customers via SMS. After we did a bit of research, we found that the job is easier than
we think. Let's take a look.

Updating Order Status
Once Luigi's got the order, he will prepare the pizzas and dispatch them. He wants
to update the order status in the system, so that his task of tracking orders becomes
easier. He also wants to send out an SMS notification to the customers telling them
that their order will reach them within half an hour. Before we can send out the
SMS, we need to build an order update process. Let's see how the task becomes
straightforward with our existing framework.

•
•
•
•
•
•
•

Sending Text Messages

[100]

Time for Action: Updating Order Status
1.	 We kept a provision for different order statuses when we designed the orders

table. The status field is an enumerated field, and can contain one of the
three values: N for New order, P for orders in Process, and C for Completed
orders. Let's add a function to our Order class to update this field. The
following code shows the function:

	 public function UpdateStatus($status)
	 {
	 $query = "UPDATE ".$this->table." SET status = '$status'
	 WHERE id = '".$this->_id."'";
	 if ($GLOBALS["db"]->UpdateQuery($query))
	 {
	 $this->status = $status;
	 return true;
	 }
	 return false;
	 }

2.	 Next, let's list new orders. For this, we query the orders table for all orders
with status "N". With each item in the list, we will add a checkbox so that
we can mark them as dispatched. Let us make a new file processOrders.
inc.php for this. We also need to add the action "processOrders" to the
$validActions array in index.php. The following code shows the code to
generate this list:

	 <?php
	 // File to process orders and mark them as dispatched
	 $prodObj = new Product();
	 $products = $prodObj->GetAll("categoryId = 1", "priority asc");
	 $varObj = new Variation();
	 $varObj = $varObj->GetAll("", "type asc");
	 $ordObj = new Order($prodObj, $varObj);

	 // Load all new orders
	 $pendingOrders = $ordObj->GetAll("status = 'N'", "orderDate asc");

	 echo '<h2>Process New Orders</h2>';
	 if (count($pendingOrders) > 0)
	 {
	 echo '<form action="index.php" method="POST">
	 <fieldset>
	 <input type="hidden" name="action" value=
 "processOrders" />';
	 foreach($pendingOrders as $order)
	 {
	 $date = date("m/d/y h:i", strtotime($order['orderDate']));

Chapter 6

[101]

	 echo '<input type="checkbox" name="orderIds[]"
 checked="checked" value="'.$order['id'].'"/>
 '.$order['id'].' ('.$date.') $'.$order['total'].'
'.$order['address1'].' '.$order['address2'].',
 '.$order['city'].' <i>'.$order['phone'].'</i>';
	 }
	 echo '<input type="submit" class="button"
 name="option" value="Update Orders" />
	 </fieldset></form>';
	 }
	 else
	 {
	 echo '<p>No pending orders to process. <a href="?action=
 processOrders">Check again.</p>';
	 }
	 ?>

3.	 When we run the code, it will show up as in the following screenshot.

4.	 Once the form is submitted, we will get the selected orders' IDs in the
$orderIds array. We can loop over this, and call the UpdateStatus method to
change the status in the table. We add the following code right after creating
$orderObj in processOrders.inc.php.

	 // If we got order IDs to process, do that
	 if ($_REQUEST['orderIds'])
	 {
	 echo "<h2>Processing...</h2>";
	 $updated = 0;
	 foreach($_REQUEST['orderIds'] as $orderId)
	 {
	 $ordObj->Load($orderId);
	 // Change the status to 'Processing...'
	 if ($ordObj->UpdateStatus('P'))
	 {
	 $updated++;
 }
 }
 echo "<p>$updated orders updated.</p>";
}

Sending Text Messages

[102]

5.	 When processed, the page will update the selected orders, and show any new
orders. Luigi can keep refreshing the page and dispatching the orders.
If there are no orders to process, the page will show "No pending orders".

Now that we have order status updates taken care of, let's get to the core of the
Luigi's requirement—sending order dispatch notification to customers via SMS.

Sending SMS Notifications
There are two approaches to sending SMS from a server. You can either connect a
phone/modem to the server and set up your own system or use a third party SMS
gateway service.

We will look at sending messages from your own server later in the chapter. For
now, we will focus on SMS gateways. SMS gateways provide an API or web service
that you can call to send messages.

Getting Started with a Gateway
We will use Clickatell (www.clickatell.com) as our SMS gateway service provider.
Clickatell can send messages to almost all mobile networks in the world at competitive
rates. It also offers a variety of methods to use its API. HTTP is the most common, in
which you send GET or POST requests to its API to send messages.

Time for Action: Registering on Clickatell
1.	 Go to www.clickatell.com, and register for an account with it.
2.	 In the registration process, Clickatell will send you the confirmation codes

via email and SMS. Enter them in to confirm your registration.
3.	 Now go to www.clickatell.com again and login to Clickatell Central using

your login details.
4.	 Because Clickatell offers multiple connection types, you need to create a

link first. Go to My Connections from the menu and select to add an HTTP
connection. The following screenshot shows the kind of form you will see.

Chapter 6

[103]

5.	 At the minimum, you need to enter a name for this connection. You can also
enter the IP range that can invoke this connection, the default country to send
messages to (so that a zero at the start of the phone number will be replaced
with that country code), and also a URL where status updates can be sent.

6.	 After submitting the form, you have the new connection set up. Each
connection has an API ID that you need to pass to the gateway while
establishing a connection. The API ID is the most important piece of
information in a connection. The next screenshot shows summary info about
our newly created POTR connection. We are now ready to use Clickatell!

Connection Types
Different gateways offer different connection types. They may offer any of the
following methods:

HTTP/HTTPS: Sending data through GET or POST submission to a URL.
SMTP: Sending a message using email, either from a desktop client or
a server.
FTP: Typically, for bulk messaging. Upload a text file to an FTP server with
request parameters.
XML: Send XML data over HTTP to the API. This makes it easier to send
messages in a batch.
SMPP: Binary socket connection with the gateway. Typically, used for
higher-end applications.
COM Object: Not very common, but allows connection using a COM object
from Windows applications.

Integrating with Clickatell
We are selecting the HTTP method to integrate with Clickatell. HTTP is familiar to
web developers, easy to use, and offers many features. You can pass parameters
to the API as variables in a GET or POST request. Apart from that, HTTP is also
supported by most gateways. A request to send an SMS looks like the following
on Clickatell:

http://api.clickatell.com/http/sendmsg?api_id=xxxx&user=xxxx&password
=xxxx&to=xxxx&text=xxxx

•

•

•

•

•

•

Sending Text Messages

[104]

You can send a test message by entering the URL in your browser and replacing
xxxx with proper values. Keep in mind that every message costs! Most gateways will
provide some free credits or discounted rates for test messages, but the meter keeps
running for every message you send! Our meter for Luigi is also running, so let us
proceed with integrating the Clickatell API into the POTR code.

We will first write a wrapper class to integrate with Clickatell. This will keep
the integration distinct from other code, and make it easier to manage changes.
Essentially, it will send GET requests and process the response. Here is how the
API works for Clickatell:

To Authenticate and Get a Session:
Command: http://api.clickatell.com/http/auth?api_id=xxxx&user=
xxxx&password=xxxx.
Response: OK: Session ID or ERR: Error number.

To Send an SMS after Authenticating:
Command: http://api.clickatell.com/http/sendmsg?session_id=xxx
x&to=xxxx&text=xxxx.
Response: ID: apimsgid or ERR: Error number

Based on this, let's write up our wrapper class.

Time for Action: Integrating with Clickatell to Send
SMS Notifications

1.	 The first step in Clickatell integration is to authenticate and get a session ID.
We can use this session ID in all further requests. Let us start our SMSGateway
class with some basic variables and initialization functions.

	 <?php
	 class SMSGateway
	 {
	 private $apiURL;
	 private $apiId;
	 private $sessionId;

	 public $lastCommand;
	 public $lastResult;

	 public function __construct()
	 {
	 $this->apiURL = "http://api.clickatell.com/http/";
	 }

•

•

•

•

Chapter 6

[105]

	 public function Init($username, $password, $apiId)
	 {
	 $this->apiId = $apiId;
	 $params['user'] = $username;
	 $params['password'] = $password;
	 $params['api_id'] = $this->apiId;
	 $command = 'auth';
	 if ($this->Request($command, $params))
	 {
	 return true;
	 }
	 }
	 }
	 ?>

2.	 The request function takes the name of the command and an array of
parameters to pass. We will make a HTTP GET request to the Clickatell API
URL and process the response string. The basic pattern of the response string
is two parts separated by a colon. The first part is the status code and the
second part is the value. So for authentication, we will get "OK: Session ID".
If there is an error, we will get "ERR: Error number". Let us write the function
now. The following code shows the implementation.

	 public function Request($command, $params)
	 {
	 $url = $this->apiURL.$command.'?';
	 // Add the session ID to requests
	 if ($command != "auth" && $this->sessionId != "")
	 {
	 $params['session_id'] = $this->sessionId;
	 }
	 foreach($params as $key=>$value)
	 {
	 $url .= "&$key=".urlencode($value);
	 }
	 try
	 {
	 // PHP's file() function can make HTTP GET requests and
 // return the response
	 // So let's just use that for now
	 $response = file($url);
	 $resultArr = explode(":", $response[0]);
	 $this->lastResult = trim($resultArr[1]);
	 if ($resultArr[0] == "ERR")
	 {

Sending Text Messages

[106]

	 $this->lastResult = "ERR";
	 return false;
	 }
	 else
	 {
	 switch($command)
	 {
	 case "auth":
	 $this->sessionId = $this->lastResult;
	 break;
	 default:
	 break;
	 }
	 return true;
	 }
	 }
	 catch (Exception $ex)
	 {
	 // Problem, could not process the request
	 $this->lastResult = "ERR";
	 return false;
	 }
	 }

3.	 Now that the basics are in place, let us write a function to make a "Send"
request. We need the number to send the message to, the "from" number,
and the actual message. We can even validate the phone number using
some pattern. But for now, let's perform basic cleanups of removing spaces
and the '+' sign from the number. The following code shows the Send and
CleanUpPhoneNumber functions.

	 public function CleanUpPhoneNumber($phone)
	 {
	 $phone = trim($phone);
	 $phone = str_replace(" ", "", $phone);
	 $phone = str_replace("+", "", $phone);
	 return $phone;
	 }
	 public function Send($to, $from, $msg)
	 {
	 $command = "sendmsg";
	 $to = $this->CleanUpPhoneNumber($to);
	 if ($to == "")
	 {
	 return 0;

Chapter 6

[107]

	 }
	 $params['to'] = $to;
	 $params['from'] = $from;
	 $params['text'] = $msg;
	 $message = new Message();
	 if ($this->Request($command, $params))
	 {
	 return $this->lastResult;	
	 }
	 return 0;
	 }

4.	 The important parts here are the "sendmsg" command, and to, from, and text
parameters. They tell Clickatell to queue the message for delivery.

5.	 Let us modify our processOrders.inc.php and add SMS sending to it.
When the status is changed from new to processing, we will send a message
to the customer, notifying her or him that the pizzas are on their way! To do
this, initialize an SMSGateway object, authenticate with the gateway, and then
send out messages in a loop. The following code highlights the modifications
to the processOrders.inc.php code for this.

	 // If we got order IDs to process, do that
	 if ($_REQUEST['orderIds'])
	 {
	 echo "<h2>Processing...</h2>";
	 // First, authenticate with the SMS Gateway
	 $sms = new SMSGateway();
	 // Pass Clickatell username, password and API ID
	 if (!$sms->Init("username", "password", "3015229"))
	 {
	 $msg = "Could not authenticate with SMS Gateway.";
	 }
	 $updated = 0;
	 $sent = 0;
	 foreach($_REQUEST['orderIds'] as $orderId)
	 {
	 $ordObj->Load($orderId);
	 // Change the status to 'Processing...'
	 if ($ordObj->UpdateStatus('P'))
	 {
	 $updated++;
	 }
	 $msg = "Order dispatched. Pizzas will reach you within
 30 minutes. - POTR";
	 // Now send an SMS: to, from, message

Sending Text Messages

[108]

	 if ($sms->Send($ordObj->phone, "170212345678", $msg))
	 {
	 $sent++;
	 }
	 }
	 echo "<p>$updated orders updated. $sent messages sent.<
 /b></p>";	
	 }

6.	 Congratulations! This completes sending SMS notifications when orders are
dispatched. The screen for Luigi will look similar to the following screenshot.

7.	 Well, we should fix the grammar on that page to take care of singulars,
but we expect a lot of orders! So let's keep it at that for now, and see what
happened here.

What Just Happened?
Our SMSGateway class creates a URL to call based on the command and the
parameters. The first command is to authenticate, so it does that in the Init()
function. The Request() function makes the actual request via the file() function.
At this time, the Clickatell gateway receives the requests, confirms the validity of the
session or login information, and sends back a result.

The result is in two parts separated by a colon. The first part is the status code and
the second the actual value. Our Request() function splits the response at the colon,
and checks if the status code is an error. If it is, we return false. We also store the
latest result from Clickatell in the lastResult variable in all cases. This can be used
later, e.g., to store the session ID so that we can pass it with subsequent requests.

We have hard-coded the API ID and From number in our code. Ideally, it should
come from a configuration file. The rest of the code is to update the table and show
the result to the administrator.

This is what happens on our server. But how does the message actually reach the
customer? Let's see how.

Chapter 6

[109]

So What Happens at the Gateway?
Clickatell, or any other SMS gateway, is connected to multiple mobile operator
networks. Using the SMSC (Short Message Service Center) of the operator, they send
out messages. Take a look at the following figure; it explains how a message is sent
from our website to the mobile device.

SMSC (Short Message Service Center) and MSC (Mobile Switching Center) are the
most important parts of the process. SMSC is a store and forward agent; it stores the
messages to be sent and tries to deliver them via an appropriate switching center.
Consider that the job of an MSC is very much like that of a network switch—routing
information as necessary. The SMS Service Center now checks with the Home
Location Register (HLR) and Visitor Location Register (VLR) to see where the mobile
device is. If you are roaming outside your home location, you will be registered in
the Visitor Location Register in that particular location. When you come back to the
home location, you will be registered in the Home Location Register. The registers
essentially keep a track of your presence! Once it is confirmed where the device is
and that it is available, the message is sent to the MSC, and MSC delivers it to the
mobile through the Base Station Controller (BSC) and Base Transceiver Station (BTS).
The job of BSC and BTS is to interact with the device via the cellular network. If the
mobile is out of range, the destination MSC will notify the SMSC when it comes
back in range; and the SMSC will resend the message. The SMSC typically stores the
message for one day, but the validity period can be set by the sender as well.

Sending Text Messages

[110]

Because SMS gateways are connected to many mobile networks, they intelligently
select the route to send the message through. SMSCs can also provide
acknowledgement of the message delivery and the gateway may pass it back
to the website.

If your head is not spinning with all the jargon, let's look at some more. If it is,
chill, it's only the jargon that's difficult. The fundamentals are easy to understand!
Check out the "Mobile Messaging Jargon File" box for some easier, more frequently
used terms!

Mobile Messaging Jargon File
Flash Message: Short message that is displayed immediately on receipt on
the mobile device's screen.
Mobile Originated (MO): A message sent (originating) from a mobile
device to an application or another device.
Mobile Terminated (MT): A message sent from an application to
(terminating on) a mobile device.
Shortcode: A short (usually 4 digits) number that is used in premium SMS
services to send messages to. Generally, the same shortcode is available
across multiple mobile operators.

Finding Message Delivery Status
We are sending out messages, but don't have a way to find out if they get delivered.
Unless we find that out, we are not really sure what happens to them. We won't even
know how much time it takes to deliver messages! Luigi can't live in a limbo like
this, so let us build a mechanism to track messages.

Time for Action: Tracking Queued Messages
1.	 Create a table called "messages". The fields will be id (primary key),

gwId (gateway message ID), requestDate, to (phone number), message
(the actual message), and status (enum: Q for queued, G for delivered to
upstream gateway, R for received, and F for failed).

2.	 Create a class "Message" extending the BaseModel. Add variables to map
to the table fields. This is simply a data holder class and will look like the
following code.

	 class Message extends BaseModel
	 {
	 public $_to;
	 public $_message;
	 public $_requestDate;

Chapter 6

[111]

	 public $_status;
	 public $_gwId;
	 public function __construct($tableName = "messages",
 $data = null)
	 {
	 parent::__construct($tableName, $data);
	 }
	 }

3.	 We can now instantiate the message class when we are sending the SMS
in the SMSGateway class. Populate the values in it and save it to the table.
The Save() function will give us the auto-incremented primary key of
the table, and that in turn can be passed to the Clickatell gateway as client
message ID. The following code shows the modified Send() method in the
SMSGateway class.

	 public function Send($to, $from, $msg)
	 {
	 $command = "sendmsg";
	 $to = $this->CleanUpPhoneNumber($to);
	 if ($to == "")
	 {
	 return 0;
	 }
	 $params['to'] = $to;
	 $params['from'] = $from;
	 $params['text'] = $msg;
	 $message = new Message();
	 $message->to = $to;
	 $message->message = $msg;
	 $message->requestDate = date("Y-m-d H:i:s");
	 if ($message->Save())
	 {
	 $params['climsgid'] = $message->id;
	 if ($this->Request($command, $params))
	 {
	 $message->gwId = $this->lastResult;
	 $message->status = 'Q';
	 if ($message->Save())
	 {
	 return $this->lastResult;	
	 }
	 }
	 }
	 return 0;
	 }

4.	 We now have records being inserted every time a message is queued
onto Clickatell!

Sending Text Messages

[112]

Querying for Message Status
If you noticed, the messages are saved with default blank status first. Once we get
the result from the gateway, we update the message row with "Q" as the status. This
way if a message's status is blank, it means it was never queued to the gateway.

Clickatell returns an ID for each message we queue—which is what we store in
the gwId field. We can use that ID to check the status of the message delivery. The
Clickatell API to check message status is like the following:

Command: http://api.clickatell.com/http/querymsg?session_
id=xxx&apimsgid=XXXXX.
Response: ID: xxxx Status: xxxx or ERR: Error number.

We can even use the client message ID (climsgid) to query message status.
Integrating the querymsg command with our class is simple. We can add a new
function QueryStatus($gwId)and make a request to the gateway. Clickatell
returns numeric codes for the status (refer to the Clickatell API documentation at
http://support.clickatell.com). We can process the returned status code and
update our message table accordingly.

What we are doing here is polling for message status. Polling is a good solution
when you want the status of particular messages, but Clickatell provides another
method for getting message status. And this method pushes status updates to us,
rather than our pulling them!

Lessen the Load with Status Update Callbacks
While we set up the connection type on Clickatell, we can also specify a callback
URL. If set, the gateway will make a GET request to that URL every time the status of
a queued message changes. This reduces the load on both your server and Clickatell,
as there is no polling required. Clickatell returns apiMsgId, cliMsgId, api_id, to,
timestamp, from, status, and charge values to the callback. The URL must be
publicly accessible so that Clickatell can call it, which means it may not work in your
test environment.

Apart from setting up the callback URL in preferences for the connection, you also
need to pass "deliv_ack" and "callback" parameters in the "sendmsg" command.
Queuing the message now will keep updating you when it is accepted by the
gateway, forwarded to an upstream gateway in the mobile network, and received on
the device. We are not covering the details of callback implementation here because
they are well documented and Clickatell specific.

•

•

Chapter 6

[113]

Callbacks are an important feature of a gateway. There are other gateways that
provide similar features and you can check with the gateway you choose about
callbacks beforehand. Actually, there are many things you should check before
selecting your SMS gateway. Let's review what you should check!

Before You Decide on a Gateway
We used Clickatell for POTR. But you can select any SMS gateway that you
like. There are many service providers in this area and finding the right gateway
can be confusing. For starters, you can review the list on Developers' Home:
http://www.developershome.com/sms/smsGatewayProvComp.asp or the listing
on Dmoz: http://dmoz.org/Computers/Mobile_Computing/Wireless_Data/
Short_Messaging_Service/. After that, you can Google for SMS gateways in
your region. You will get many results. If you have many choices, you need some
guidelines on selecting the best one.

Here are a few things you can keep in mind while deciding on the gateway:

The idea is to find the cheapest, most reliable, and easiest SMS gateway!
There is no single choice for all these requirements. So the starting step is to
clearly know what you want!
SMS sending charges can be either credit-based or per message. One credit
need not always mean one message. Gateways that show better messages/
credit ratio may have higher price for each credit.
Identify the countries you want to send messages to. Not all gateways serve
all countries.
Check the reliability of the network. If you can, send a test message from the
gateway to determine the delay in delivery.
How many messages will you be sending? There are volume discounts.
Charges also vary according to the destination country and mobile network.
How many will you be sending where?
Check out hidden costs. Set up costs or taxes may be hidden.
Some gateways will also have minimum purchase commitments. Factor this
in when you do your estimates.
Check the validity of the package you buy. You don't want it to
expire unused!
What are the different ways to connect to the gateway? Most support HTTP
access. If you require SMPP, XML or any other, check right at the start.

•

•

•

•

•

•

•

•

•

•

Sending Text Messages

[114]

You should also check the level and type of support available. Are the APIs
well documented? Can you find enough examples on the provider's site as
well as on other sources? (Try Googling a bit!)
Check the type of reports and stats you will have. Your credits can disappear
very quickly, and you want to be on top of it! A gateway that can provide
you alerts when the credit level falls below a threshold is great!
Does the gateway provide a callback service? How will you know the
delivery status of the message?
How can you send bulk SMS? Is there an easy way for it?
Do you want to send MMS/WAP Push or other type of messages? If so, will
the gateway support it?
If you require two-way messaging, check now! Lot of gateways do not
provide this service.
Similarly, if you want short codes, check the availability and costs associated
with them. Typically, there will be a setup fee and minimum commitment
with shortcodes as well.
You can even use multiple SMS gateways. Depending on the feature required
or the network, you can queue your messages on any of them.

Sending SMS from Your Own Computer
We promised we will tell you more about sending SMS from your own computer/
server earlier! Now is the time for that!

•

•

•

•

•

•

•

•

Chapter 6

[115]

You can connect a phone or GSM/GPRS/CDMA modem to your computer and send
out messages. GSM/CDMA modems come in various types. External modems that
connect to the computer via serial interface and take a SIM card are most popular.
Most mobile phones come with some kind of PC communication suite software these
days. Such software will allow you to send out messages from the computer. If you
want to send messages from another application, you will need to use a software that
exposes message-sending APIs—either through a socket connection or via command
line. Here are some resources that will help you in setting up your
own gateway:

Kannel (www.kannel.org) is the most popular WAP/SMS gateway in the
open-source world.
Gnokii (www.gnokii.org) can also connect to a phone and send/receive
messages.
PlaySMS (http://playsms.sourceforge.net) is a set of PHP scripts that
can integrate with Kannel, Gnokii, Uplink, and Clickatell.
SMS Link (http://smslink.sourceforge.net) is another SMS server using
a serially attached GSM device.
Developers' Home has some other free SMS libraries listed as well:
http://www.developershome.com/sms/freeLibForSMS.asp.

There are many commercial SMS gateway software solutions that can connect to a
phone or special GSM modem. Search online for "SMS Gateway" and you will get a
long list!

Setting up your own SMS gateway may not be simple. You would opt for this option
if you want maximum control and have reliable hardware to send out messages. It's
better to use third-party gateways otherwise.

Sending Bulk Messages
Broadcasting messages to a wide audience is a common requirement. Luigi might
want to inform all his customers about a special offer for this evening via SMS. We
can do this by looping over our customer list and sending out messages. But that
would involve too many connections to the gateway—which will be slow.

There are easier methods for this purpose. Clickatell, and many other gateways,
allow sending comma-separated multiple phone numbers in the "to" parameter.
You may start a batch of messages and do a mail merge type operation. With some
gateways, you can send phone numbers via text file or XML.

•

•

•

•

•

Sending Text Messages

[116]

If your requirements are bigger, consider using SMPP (Short Message Peer-to-
Peer Protocol) for connecting to the gateway. SMPP provides reliable and fast
communication with the gateway. There is a bit of learning curve with SMPP-based
integration, but it will pay off for large projects.

For us, we are happy with our current messaging setup. It's time to take a quick look
at what we learned!

Summary
In this chapter, we learned to send SMS messages to our customers. Specifically:

We built a system to update order status for POTR.
We learned how to set-up an account with Clickatell and how the gateway
APIs work. We then created the SMSGateway wrapper class.
We then saw how an SMS is delivered from the website to the mobile device,
through SMSC and MSC.
We touched upon using callbacks for message status updates.
We learned how to query the message status and send bulk messages.
We also got an overview of setting up our own SMS gateway and guidelines
for selecting a third-party gateway.

Luigi has a new idea of sending special offers with photographs via MMS now. In
the next chapter, we will look at how we can do just that!

•

•

•

•

•

•

Adding Spice to
Messages: MMS

Sending text messages to customers allowed us to instantly connect with our
customers. Our SMS work has been very rewarding for Luigi and Pizza On the Run.
This small update removed the customers' anxiety! Luigi has now started sending
special offers via SMS.

Excited as he is, Luigi now wants to explore Multimedia Messaging Service (MMS)
and send out special offers with a photo of the dish. He even has a new idea to
engage customers in a community by asking them to share their pizza party photos
and testimonials. It would be fun to see everyone eating our pizzas and posing for
the camera! Let's figure it out then!

In this chapter, we will work on:

Creating Multimedia Messages for special offers at POTR
Controlling message presentation
Sending Multimedia Messages through our gateway
Receiving photos from customers via MMS

MMS is a popular means to circulate porn videos and movie trailers, but there is
certainly a lot more to it than that! Let's create an MMS message and understand
more about it.

•

•

•

•

Adding Spice to Messages: MMS

[118]

Creating a "Special Offers" MMS message
We want to send a message with a 'special offer' and a pizza image. There are many
ways to send such an MMS message. We can:

Compose it using a mobile device and send it from there.
Compose using a mobile device, send it as an email, and send it to customers
from there.
Write a script to generate an MMS message through an MMS library or SDK.
Send out via an MMS gateway.
Compose using Nokia, Openwave (or any other) toolkit and send it via
the server.

We are interested in the last two options. Let us look at how to compose and preview
an MMS message using Nokia tools.

Time for Action: Compose an MMS message using
Nokia Tools

1.	 We will use the "Nokia Mobile Internet Toolkit" (NMIT) and "Series 60
Content Authoring SDK 2.0 for Symbian OS" (SDK). Download and register
them from http://forum.nokia.com/tools/. You will also need to get
a serial key for NMIT. The tools and accompanying documentation are
completely free though. Make sure you have both of them installed.

2.	 Open NMIT, go to File menu, and select New. You will see a screen similar
to the one shown in the following screenshot. Go to the Messaging tab and
select MMS Wizard.

•

•

•

•

Chapter 7

[119]

3.	 The first thing we need to tell the wizard is whether we are trying to send a
message or receive one. We will be sending the message, so select m-send-req.

4.	 The next screen will ask for recipient address. MMS messages can be sent
to email addresses, mobile devices, or IP addresses. The wizard shows you
examples of the three types of addresses you can enter. For now, we enter
an email address. Notice the < and > around the email address. Some MMS
gateways will not be able to send the email if you skip them. On the same
screen, you can also enter the subject of the MMS message and any address
to which you want to CC the message.

Adding Spice to Messages: MMS

[120]

5.	 We are now at a stage to create the actual content of the message. Create a
text file with the special offer message, and pick up an image you wish to
send. We are using the POTR logo and special_offer.txt. The following
screenshot shows the picked files. Minimum supported formats are text,
images (JPG, GIF, WBMP, 160x120 pixels), audio (AMR), and calendar
(vCard, vCalendar). The newer devices also support MP3 audio and
MP4/3GP video.

Chapter 7

[121]

6.	 Step 4 of the wizard asks whether you have an SMIL file or you would like
it to auto-generate it. SMIL (pronounced "smile") files are used to control the
presentation of our message. For now, let the system auto-generate the file.
Later in the chapter, we will see how we can customize the file.

Adding Spice to Messages: MMS

[122]

7.	 You should now see a screen like the one shown in the following screenshot.
The top part shows message headers that will be sent out. You can specify an
ID for the message, date, to, and from among other things. The bottom half
of the screen is the MMS content. The bottom left shows you the files you
added. The bottom right shows how the files will be encoded for the message
and properties you can set for encoding. MMS messages are binary messages
and need to be encoded in a particular way.

Chapter 7

[123]

8.	 We have our first MMS message ready now. Save it on disk so that we can
edit it later. We now want to preview how it will look on a mobile device.

9.	 Go to the SDK panel in NMIT. The Content Authoring SDK will show up on
the right-hand side. Click the green button next to the SDK name to start an
instance of it. This will launch the Series 60 emulator.

10.	 After the SDK has started, come back to the MMS tab and click on the Push
button at the bottom. This will send the message to the SDK.

Adding Spice to Messages: MMS

[124]

11.	 Go to the Message Inbox on the SDK emulator and our MMS message
message should be there. Open it and you can view the message. The
following screenshot shows how this will look like on the SDK.

What Just Happened: Understanding MMS
Structure
As we added different files, the Nokia toolkit encoded them in a particular way.
When we clicked push, it placed the MMS message in the emulator's Inbox. Just
like normal email and SMS, MMS messages could be plain-text. Or like an email
with attachments, they could contain multiple parts. Such messages are called
multipart—one message contains multiple files—each in its own part, separated by a
boundary. If you want to understand the structure of MMS, you need to understand
these three different types of multipart messages:

Chapter 7

[125]

Multipart-related: Apart from the content parts, there is also a special
presentation part at the beginning of the message. This part refers to other
parts and determines how the message will be displayed. We created a
multipart-related message in the example.
Multipart-alternative: Some devices supported alternative presentation
files—SMIL or XHTML for example. When you include both XHTML and
SMIL for presentation, if the device supports XHTML in MMS, it will use
that. On other devices, SMIL will be used. The order of including these files is
in order of complexity. Simplest first. So first SMIL and then XHTML.
Multipart-mixed: If you just want your files shown sequentially or treated
like attachments, you can use multipart-mixed.

The following screenshot shows how a multipart-alternative message may be
constructed. Each part inside the body has a Content ID or Content Location that is
used to refer to that file in the presentation.

•

•

•

Adding Spice to Messages: MMS

[126]

The message type, recipient addresses, and subject that we entered in the example
above go in the MMS headers. If you noticed, you could enter your own headers or
modify some default values for headers in the NMIT MMS composer. One header
you may like to know about is "X-Mms-Message-Class". This header determines the
type of message, and the value could be Personal, Advertisement, Informational, or
Auto. Use an appropriate value for your messages.

The SMIL file that NMIT automatically generated is an XML file that defines how the
logo and special offer text would be placed. We will look at SMIL in a bit more detail
later in the chapter.

When you clicked the Push button, NMIT encoded all the content together in a
binary format and sent it to the Content Authoring SDK. Unlike emails, you can't see
the body of an MMS message with a text editor. There are set standards about how
the headers should be constructed and how different elements should be referenced.
If we use a Hex Editor to open the file, it would look like the following screenshot.
The SDK decodes this format and shows it up as an MMS message. If you wanted to
write your own MMS decoder, you would need to understand this format!

Chapter 7

[127]

Want to Know More about MMS?
MMS is a vast subject. There are different things that happen to MMS—from
construction to read receipts. A search on Google may not always take you to the
best information on the topic. Openwave and Nokia Forum have very good material
on MMS and developing MMS applications. You should read the articles and
documentation available at both these places before you look at the MMS specs from
www.3gpp.org or www.openmobilealliance.org. Openwave and Nokia also have
tools that you can use to encode and decode MMS using a programming language.
Later in the chapter, we will look at MMSDecoder—a PHP library to process MMS.

Hold on before you create too many special offers!
Creating and sending MMS messages is not very difficult. But sending too
many messages can get you in trouble. Sending unsolicited SMS/MMS
messages is considered as spam and many countries have strict laws
against it. Even if you are collecting customer phone numbers on your
site, make sure you have an appropriate "Privacy Policy" and "Terms of
Use" to safeguard you. At the same time, make subscription completely
opt-in and allow for an easy unsubscribe procedure. We don't want
to irritate our customers; POTR thrives on recommendations from
existing customers!

Now that we have looked at the bones and flesh of the MMS, let's check out the skin!
They say that your smile is the most beautiful part of your face. Let's see how SMIL
can add beauty to our message!

Controlling Message Presentation
SMIL (Synchronized Multimedia Integration Language, pronounced "smile") is an
XML-based HTML-like markup language. With SMIL, you can create slide-like
presentations with text, images, streaming audio/video, and other media types.
There are many standards and specifications about SMIL, as it has been around
for quite some time. 3GPP (3rd Generation Partnership Program) has defined a
SMIL profile for MMS. W3C's Mobile Profile is compatible with that. W3C has
also defined SMIL Basic Profile and SMIL Extended Mobile Profile. For this book,
we will only look at basic SMIL. You can get a lot more information from
http://www.w3.org/AudioVideo/.

For starters, let's review the NMIT-generated SMIL:
<?xml version="1.0"?>
<!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 2.0//EN"
 "http://www.w3.org/2001/SMIL20/SMIL20.dtd">
<smil xmlns="http://www.w3.org/2001/SMIL20/Language">
 <head>

Adding Spice to Messages: MMS

[128]

 <layout>
 <!-- This is a generated SMIL file. -->
 <root-layout width="160" height="120" />
 <region id="Image" width="160" height="100" />
 <region id="Text" width="160" height="20" top="100" />
 </layout>
 </head>
 <body>
 <par>

 </par>
 <par>
 <text src="special_offer.txt" region="Text" />
 </par>
 </body>
</smil>

Understanding SMIL Elements
Let us review the elements of the SMIL code we just saw:

The first three lines define the XML document type and the SMIL
namespace—very similar to XHTML.
The head element defines the layout of the presentation. There are two
regions in our presentation, one for the image and the other for the text. The
layout element also defines the size.
The ID attribute in region is important. We must use the same ID in the img
or text elements for the item to be placed in that region.
The par element is as such a slide. Elements within a par element are run in
parallel. In this case, we have only one element in each par element.
img and text elements define the source of content. You can specify the
Content-Location in the src. If you have used Content-Id's, you can specify
something like "src=cid:contentid".

That was basic SMIL. Now let us see what are the other modules/elements in SMIL.

Modules and Elements of SMIL 2.1 Mobile Profile
The following table lists the ten modules and their elements of SMIL 2.1 Mobile
Profile as described by W3C. As you can see, SMIL is very powerful. It allows you
to apply transitions to slides, show content in parallel or sequence, define links,
position regions on the screen, and even define metadata for your presentation.

•

•

•

•

•

Chapter 7

[129]

Module Elements
ContentControl switch, prefetch
Layout region, root-layout, layout, regPoint
LinkAnchor a, area
MediaContent text, img, audio, video, ref, textstream, param, paramGroup
Metainformation meta, metadata
Structure smil, head, body
Schedule par, seq
Transition transition

Transitions—that looks interesting. Why not add a transition to our special offer?
Let's do that!

More SMIL: Applying Transitions
We can define a transition element in head and use it with content elements.
Review the following code for a customization of our MMS message. We have
broken it down into multiple slides, applied duration to them, and also applied
in/out transitions to a few slides.

<smil>
 <head>
 <layout>
 <root-layout width="120" height="140"/>
 <region id="Image" width="120" height="80" left="0" top="0"/>
 <region id="Text" width="120" height="60" left="0" top="80"/>
 </layout>
 <transition id="wipeScreen" type="clockWipe" subtype="
 clockwipeTwelve" dur="1s" scope="screen" />
 </head>

 <body>
 <par dur="3s">

 <text src="intro.txt" region="Text" transOut="wipeScreen" />
 </par>
 <par dur="5s">

 <text src="cid:special_offer.txt" region="Text" />
 </par>
 <par dur="3s">

 <text src="discount.txt" region="Text" transIn="wipeScreen" />

Adding Spice to Messages: MMS

[130]

 </par>
 <par dur="2s">

 <text src="thank_you.txt" region="Text" />
 </par>
 </body>
</smil>

That was easy to understand, wasn't it? Different elements and the transition applied
via transIn or transOut attributes. The following screenshot shows how the slides
will render, but without the screen wipe effect!

You can try out different SMIL elements and get your message to look the way you
want. You may even use a SMIL editor to combine various media files you have
designed. Test it on the device to make sure the SMIL doesn't make your device cry!

But hey, we haven't tried our message on a real mobile device yet! How about
sending it out now?

Chapter 7

[131]

Sending Multimedia Messages through
Our Gateway
Sending an MMS message is similar to sending an SMS message at API level.
Internally, an MMS message has to go through different stages before it finally
gets delivered to the device. Let us start by sending our MMS message using our
Clickatell gateway.

Time for Action: Sending MMS Messages via
Clickatell

1.	 We first need to upload our MMS message to a publicly accessible URL so
that the device can download it. Using an FTP program, we upload our
offer.mms to the POTR server.

2.	 Now let's add a function to our SMSGateway class. This function will take all
parameters and pass them to the Clickatell gateway. Notice that the API URL
is different and we need to authenticate for sending the notification.

	 public function SendMMS($username, $password, $apiId, $to, $from,
 $subject, $mms_from, $mms_url)
	 {
	 $to = $this->CleanUpPhoneNumber($to);
	 if ($to == "")
	 {
	 return false;
	 }
	 // The API URL is slightly different for MMS
	 $this->apiURL = "http://api.clickatell.com/mms/";
	 // We also need to authenticate for this call
	 $params['user'] = $username;
	 $params['password'] = $password;
	 $params['api_id'] = $apiId;
	 $params['to'] = $to;
	 $params['from'] = $from;
	 $params['mms_subject'] = $subject;
	 $params['mms_class'] = 82; // 80 (Personal), 81
 // (Advertisement), 82 (Informational), 83 (Auto)
	 $params['mms_expire'] = 3000; // Expiry time in seconds
	 $params['mms_from'] = $mms_from;
	 $params['mms_url'] = $mms_url;
	 $params['to'] = $to;
	 $command = "ind_push.php";
	 if ($this->Request($command, $params))
	 {
	 return true;
	 }
	 }

Adding Spice to Messages: MMS

[132]

3.	 We can now create a new PHP file to send out MMS messages using this
function. The following code shows this file. We keep the subject, from, and
MMS URL short, so that it can easily go in the WAP Push SMS. Unlike SMS,
there is no specific limit on MMS message size though.

	 <?php
	 $sms = new SMSGateway();
	 $mms_url = "http://potr.mehtanirav.com/mms/offer.mms";
	 $result = $sms->SendMMS("username", "password", "3015229",
 "919322504767", "919322504767", "25% discount,
 Pizza making", "Luigi - POTR", $mms_url);
	 if ($result)
	 {
	 echo "MMS Notification sent!";
	 }
	 else
	 {
	 echo "Could not send the notification.";
	 }
	 ?>

4.	 We add "mms" to our $validActions array in index.php, and can now
access the page. It should connect to Clickatell and send out the notification.

5.	 On the mobile, you will receive a notification asking to download/open
the MMS message. Open the MMS message, and you can view our special
offer with all its special effects!

How is an MMS Message Sent?
So how did you get the MMS Message? There are multiple stages in an MMS
delivery. The following figure shows the overall transactions going on between the
MMS originator (on left) and the MMS receiver (on the right).

Chapter 7

[133]

Let's review what's happening:

1.	 When you send an MMS Message request, a m-send-req Protocol Data Unit
(PDU) is sent to the MMS Gateway over WAP Post. The gateway accepts the
MMS for delivery and sends a confirmation back (m-send-conf).

2.	 Through a binary SMS known as WAP Push, the gateway sends a notification
(m-notification.ind) to the receiver that a new MMS Message is available.
The MMS client at the receiver end may opt to download the message later.
In this case a m-notifyResp.ind message is sent back to the gateway.
Essentially, the client is telling the gateway that "Oh yeah... I got your
notification. But I will see the message later, I'm kinda busy right now!".

3.	 When the client is ready to see the message, (which could be immediately
as well), it sends a request (m-retrieve.conf or HTTP Get.req) to the
gateway. The gateway picks up the MMS Message, sends it over the client,
and waits for the client to send m-acknowledge.ind.

4.	 Once the acknowledgement is received, the gateway passes back an
m-delivery.ind message to the originator, saying "Hey, I've done my job.
Your message is delivered!"

Don't you think MMS is much more involved than SMS? All those "m-*.*" PDUs can
surely get confusing for the first few times! But hey, you don't need to bother about
them until you want to get deeper into MMS delivery. Till then, you can be happy
pushing messages through the Gateway API!

MMS Gateways do Good Work
Apart from pushing around those PDUs, a typical MMS Gateway does a whole lot
of other things as well. It may convert media files in the MMS message to a format
supported by the mobile device, route the MMS message to an email address, or
forward it to another MMSC. Do check up the MMS services of the gateway you
select. You never know when you will need that extra bit!

It's time to switch gears now. We have seen how to send multimedia messages, let's
look at how we can receive them now.

Adding Spice to Messages: MMS

[134]

Receiving Photos from Customers
via MMS
An MMS message can be delivered to an email address, and that's the easiest way
to receive MMS messages on a server! Simply ask the customers to use your email
address in the To field of the MMS message, and the gateway will send over the
MMS message to your email address. If the gateway is good (and most of them are),
it will send the media files as attachments to the email. This means you can use a
standard email parsing class to extract the attachments.

Many gateways can also receive MMS messages on your behalf. The user will send
the MMS message to a particular number (could be a short code too), and the gateway
will process the MMS message and send it to you as an email or POST it to a URL you
specify. If your gateway provides such a feature, you can go ahead and use that.

If you are going to get the MMS message via email (either directly or via the
gateway), you can use standard POP libraries to fetch the message along with the
attachments. There are many such libraries available, so we won't cover them here.
Let's look at how we can decode an actual MMS message for now. We will also not
worry about getting the MMS message itself. We are assuming that's taken care of.

Openwave and Nokia have good sets of libraries in Java and C++ to decode MMS.
There are other sources too. When it comes to PHP, there aren't really many options.
Jonathan Heyman's MMSDecoder (http://heyman.info/mmsdecoder.php) is a
very good library to decode MMS messages. His code extends the work of Stefan
Hellkvist's MMSLib code (http://hellkvist.org/software/).

You can use MMSLib to create MMS messages through a script—including
text and images at run time.

Time for Action: Decoding an MMS Message
1.	 Download and extract the MMS Decoder library to the POTR web directory.

The heart of the library is a file called mmsdecoder.php. Open the file and
turn on debugging by defining the DEBUG constant as 1 near the start of
the file.

2.	 Create a new file—decodeMMS.inc.php—and include the mmsdecoder.
php file. Then let's decode user.mms—an MMS file we have got. Calling the
parse() method on the decode will process the MMS message and create
different parts for the content in it. The code for this would look like:

	 require_once("mmsdecoder.php");
	 $mmsFile = "user.mms";

Chapter 7

[135]

	 $mmsData = file_get_contents($mmsFile);
	 $mms = new MMSDecoder($mmsData);
	 $mms->parse();

3.	 Luigi wants to put up photos of his customers eating his pizzas along with
their testimonials! So we are looking for a photo and a text in the MMS
message. We can loop through the message parts, check the content type of
each part, and save the photo if it is an image. As we are looking for only one
image and one text data section, we can skip processing the other parts once
we have got them. Following code achieves this:

	 $photoFile = $messageText = "";

	 foreach($mms->PARTS as $mmsPart)
	 {
	 $type = $mmsPart->CONTENTTYPE;
	 // Check if this is an image type data
	 if ($photoFile == "" && eregi("jpg|jpeg|gif|png", $type))
	 {
	 $ext = substr($type, strrpos($type, "/")+1);
	 $photoFile = time().".$ext";
	 $mmsPart->save($photoFile);
	 }
	 // Check if this is a plain text data,
	 // we don't want any other type of text
	 if ($messageText == "" && eregi("plain", $type))
	 {
	 $messageText = $mmsPart->DATA;
	 }
	 // If we got both files, we can save the info
	 // and complete the task!
	 if ($photoFile != "" && $messageText != "")
	 {
	 $info['from'] = $mms->FROM;
	 $info['subject'] = $mms->SUBJECT;
	 $info['photo'] = $photoFile;
	 $info['message'] = $messageText;
	 // Code to save to DB
	 echo "<p>Saved the new message</p>";
	 print_r($info); // For debugging only!
	 break;
	 }
	 }

Adding Spice to Messages: MMS

[136]

4.	 When we execute the code now, it will pick up the user.mms message,
process it, and show us the from and subject headers, and the message. The
photo file would have been saved as somenumber.jpg, where the number is
actually the UNIX Timestamp of when we processed the message.

5.	 We can save the information in a database and display it to our visitors in a
special "You Said It!" section!

What Just Happened: Decoding the MMS Message
The MMSDecoder class checks the message data—processing all the headers and
their values. After it has processed all headers, it checks the content type of the
message—multipart related or multipart mixed, and handles the parts accordingly.
The library includes an MMSPart class that stores data of each part.

Each part has a content type. We check that and save it if it's an image. We store the
saved image name in a variable, so that we can skip processing other images in the
message. If you want to save all images from a message, you can use an array to
store all image file names and append a counter variable to the name to ensure they
don't get overwritten.

We take the first text message into a variable, and save it to the table directly. We
have not implemented database operations here, but they are easy to add.

Note that the library does not yet support getting the name of the file in MMS. If
you want to know the name of the media file, you will have to hack the decode code
yourself! You can also check for a SMIL file in the message, and guess file names
based on the SMIL file data.

For now, it is sufficient to get the file contents!

MMS's Potential is Yet to Be Exploited!
Multimedia Messaging Service really opens up new doors for mobile web
developers. It allows you to send rich content to your subscribers effortlessly. You
can send market alerts with graphs to your customers, or best contributed videos of
the day or a clip of the latest song of their favorite band.

The full potential of MMS is yet to be exploited. The ability to receive an MMS as
email allows you to connect to your mobile customers right away. The stage is set; all
we need is a killer MMS app!

Chapter 7

[137]

Luigi, on the other hand, is not interested in developing the next killer app on MMS.
He is worried about how he can deliver a delicious pizza to his next customer! Let's
round up what we learned in this chapter.

Summary
In this chapter, we learned to send and receive MMS messages. Specifically:

We created an MMS message with Nokia's Mobile Internet Toolkit and
previewed it in the Content Authoring SDK.
We learned about SMIL, the different elements, and how they can be used to
create slide-like presentations with transition effects.
We sent out the MMS message using our gateway.
We got a taste of the inner workings of MMS delivery and the multipart
structure of MMS messages.
We used the MMSDecoder class to decode a received message and extract a
photo and text from it.

Luigi wants to target both MMS and SMS users. He is already sending out SMS
messages, but now wants to receive order delivery confirmations from customers.
This will allow him to track the exact time taken in the delivery! In the next chapter,
we will learn how to receive text messages.

•

•

•

•

•

Making Money via
Mobile Devices

Mobile Payment is a hot topic today. People talk about billions of dollars of market
opportunities: Micro and Macro payments via mobile devices, and even using the
mobile as an e-wallet. Staying on the cutting edge of technology, Luigi too wants to
explore new opportunities of growth for Pizza On The Run via mobile commerce.

We will explore and set up a mobile payment system for POTR in this chapter.
Specifically, we will look at:

Getting money through PayPal
Evaluating Mobile Payment Methods, their pros and cons
Security Concerns in Mobile Payments
Using SMS in Mobile Payment, Premium SMS, and Short Codes
Receiving Text Messages via a short code

Everyone wants to make money! And we want it fast! So let us get straight to
getting money!

Getting Money through PayPal
PayPal (www.paypal.com) is one of the largest online payment gateways. Its Mobile
Checkout feature allows us to get paid via mobile devices. The process is similar to
getting payments on the Web, and is easy to integrate. There are different methods
of getting payment via mobile devices and many mobile payment gateways too.
Later in this chapter, we will evaluate these options, but Luigi already has a PayPal
account, so for now, let's see how we can integrate PayPal Mobile Checkout for
POTR. The first step is configure our PayPal account for mobile payments.

•

•

•

•

•

Making Money via Mobile Devices

[140]

Time for Action: Setting Up the PayPal Account for
Mobile Payments

1.	 For Mobile Checkout to work, you must have a Business Account with PayPal.
So if you have a Personal or Premier account, upgrade to Business account.
Note that if your account is not verified, it may take a few days. If you don't
have a PayPal account, you can easily register one at www.paypal.com.

2.	 Next, log in to your PayPal account. Go to Profile, and API Settings. Register
a new API username, password, and key. This sets the credentials, using
which our application will access PayPal.

3.	 Once you have the API key, go to the Grant Permissions option and "View/
edit permissions". Enter the API username and check "SetMobileCheckout"
and "DoMobileCheckoutPayment" options from the list. We will use these
two methods for mobile checkout integration.

4.	 You will see a confirmation screen as shown in the following screenshot.
Confirm by clicking on the button that says Give Permission.

5.	 We are now set to integrate with PayPal!

Why This Configuration?
PayPal has excellent security mechanisms. Setting up an API key and permissions on
it allows us to manage our e-commerce stores better. We can grant different levels of
permissions to different API keys. When we pass the API key and user information
to PayPal, it will allow access based on this configuration. Without this configuration,
we won't be able to use Mobile Checkout either. But now that we have configured
our account, let us see how to integrate PayPal in our code.

Chapter 8

[141]

Mobile Checkout is a Three-Step Flow
Once the customer has ordered her or his pizza, we want to give her or him an option
to make a payment via PayPal. We will pass the order information to PayPal and
update the order status once the payment is received. As we configured, we need to
make two calls to PayPal: SetMobileCheckout and DoMobileCheckoutPayment.

1.	 SetMobileCheckout: This call sets the order information with PayPal. We
pass order amount, currency, return and cancel URLs, custom variables, etc.
to this call. A successful call returns a string token that we need to use in all
further calls for this order.

2.	 In the second step, the customer is redirected to PayPal where she or he will
enter her or his payment information—credit card details or PayPal account
information.

3.	 DoMobileCheckoutPayment: This is the call that actually gets the funds to
our PayPal account. Without this call, money will not get to our account!

PayPal provides an SDK that we can use for integration. The PHP SDK comes with
sample code to call PayPal APIs and other useful functionality. You can download it
from http://www.paypal.com/IntegrationCenter/ic_downloads.html. Now, let
us use this SDK and add some of our code to do the integration.

Time for Action: Integrating PayPal Mobile
Checkout with POTR

1.	 The last step in the POTR order process—order_step4.inc.php—saves the
order information to a database table and shows a success message to the
customer. Let us add a link on this page to make payment via PayPal. The
following code does this:

	 if ($orderObj->Save())
	 {
	 echo "<wall:h2>Order Placed!</wall:h2>";
	 echo $orderObj;
	 echo "<p>Your order is placed.</p>";
	 echo "<p>id."\"
 >Pay via Paypal!</p>";
	 $_SESSION["orderInfo"] = null;
	 }

2.	 Next, we create a payment.inc.php page, and add it to $validActions
array in index.php.

Making Money via Mobile Devices

[142]

3.	 We have combined the constants.php and CallerService.php files of the
PayPal PHP SDK into a single file that we will use: paypal.lib.php. This
will make it easier for us to integrate later. Note that we need cURL extension
of PHP installed to use this SDK. The following code shows the structure of
paypal.lib.php:

	 <?php
	 if($sandbox)
	 {
	 // sandbox (testing) authentication information
	 define('API_USERNAME', 'sdk-three_api1.sdk.com');
	 define('API_PASSWORD', 'QFZCWN5HZM8VBG7Q');
	 define('API_SIGNATURE',
 'A-IzJhZZjhg29XQ2qnhapuwxIDzyAZQ92FRP5dqBzVesOkzbdUONzmOU');
	 define('API_ENDPOINT', 'https://api-3t.sandbox.paypal.com/nvp');
	 define('PAYPAL_URL', 'https://www.sandbox.paypal.com/wc?t=');
	 }
	 else
	 {
	 // production authentication information
	 // similar to above...
	 }
	 define('VERSION', '3.0');

	 // Use cURL and make a request to PayPal for $methodName
	 // Pass $nvpStr (Name Value Pair) as parameters in the request
	 // Also pass the API authentication information
	 // Check the result and use deformatNVP() to convert
	 // it to an array and return
	 function hash_call($methodName,$nvpStr)
	 {
	 // implementation skipped...
	 }

	 // Convert the response string name value pairs into an array
	 function deformatNVP($nvpstr)
	 {
	 // implementation skipped...
	 }
	 ?>

4.	 Let us start building our payment.inc.php file now. The following code
shows the structure of the file. We handle both calls to PayPal and return
values from PayPal in this file.

	 <?php
	 $sandbox = true;
	 include('classes/paypal.lib.php');
	 // If we got order ID, but no token, it means we have to start

Chapter 8

[143]

	 // payment process with PayPal
	 if (isset($_REQUEST['id']) && !isset($_REQUEST['token']))
	 {
	 // Load all order information

	 // Pass on order information to PayPal

	 // If we get the token, pass the user on

	 }
	 // Got return from PayPal
	 else if (isset($_REQUEST['token']))
	 {
	 if ($_REQUEST['mode'] == 'return')
	 {
	 // Done well, now complete the transaction and
 // get the funds!
	 }
	 else
	 {
	 echo '<p>Order was cancelled.</p>';
	 }
	 }
	 else
	 {
	 echo '<p>Invalid parameters. Please try again!</p>';
	 }
	 ?>

5.	 Once we have loaded all the order information in $orderObj, we can pass it
to PayPal and call SetMobileCheckout. In the example here, we are passing
only a few details, but you can pass all the details you want. The return URLs
have to be publicly accessible when you put this online.

	 // Pass on order information to PayPal
	 $param['AMT'] = $orderObj->total;
	 $param['CURRENCYCODE'] = 'USD';
	 $param['DESC'] = $orderObj->GetSummary(); // Order description
	 $baseURL = 'http://'.$_SERVER['HTTP_HOST'].$_SERVER[
 'REQUEST_URI'].'&mode=';
	 $param['RETURNURL']= $baseURL.'return';
	 $param['CANCELURL']= $baseURL.'cancel';
	 $param['INVNUM']= $orderObj->id;
	 $param['PHONENUM']= $orderObj->phone;
	 $param['CUSTOM']= session_id(); // Any custom data can be sent

	 $request = '';
	 foreach($param as $key=>$value)

Making Money via Mobile Devices

[144]

	 {
	 $request .= "&$key=".urlencode($value);
	 }

	 // perform the api callback for SetMobileCheckout with
 // those values
	 $result = hash_call('SetMobileCheckout',$request);

	 // If we get success, redirect the user to PayPal
	 if(strtoupper($result['ACK']) == 'SUCCESS')
	 {
	 header('Location: '.PAYPAL_URL.urldecode($result['TOKEN']));
	 }
	 else
	 {
	 // No token, call failed!
	 echo "<p>Could not initialize PayPal connection.<
 /p><p>".print_r($result, true)."</p>";
	 }

6.	 PayPal will redirect the user to the return or cancel URL once the payment is
done. We are using the mode variable to determine if it was a return or cancel
operation. Based on these values, we can update the order status or show a
failure message to the user. The following code shows our implementation.

	 // Done well, now complete the transaction and get the funds!
	 $result = hash_call('DoMobileCheckoutPayment',
 '&token='.$_REQUEST['token']);
	 if (strtoupper($result['ACK']) == 'SUCCESS')
	 {
	 // Order successful, we can update it now
	 $orderObj = new Order(null, null);
	 // We can process/validate all returned info here...
	 $orderObj->id = $_REQUEST['INVNUM'];
	 $orderObj->UpdateStatus('P');
	 echo '<p>Payment successful. The order will soon be
 processed.</p>';
	 }

7.	 At this stage, we can customize the APIError.php file that comes in PayPal
SDK to format the errors the way we want to show them. We can also specify
another file to handle errors in our paypal.lib.php file.

Chapter 8

[145]

8.	 That's all! We are set with PayPal integration now. The following figure
shows how a customer may experience this process.

How Does This Work?
As depicted in the previous figure, the customer is redirected to PayPal after we get
the token. Here, she can login with her PayPal email and password. If she or he has
used PayPal for mobile payments earlier, and activated her mobile number, she can
login with the mobile number and PIN only. If not, she gets the option to set them
up in the next screen. She or he can then review the payment information and make
payment. If the customer does not have a PayPal account, she or he can still pay
using a credit card or bank account without needing to log in. PayPal sends an SMS
confirmation to activate the phone number.

Once the payment is done, the user is brought back to merchant site (POTR), and we
can validate the information received to show a confirmation message.

This process is similar to standard web checkout systems, and customers are
receptive to it. The money gets debited from their Paypal account or credit card.
The merchant gets the money in his or her PayPal account and can use the standard
withdrawal process to get it to his or her bank account.

Making Money via Mobile Devices

[146]

Alright, so we've got PayPal working. But what if we did not want to use PayPal?
Well, there are many alternatives to PayPal! Google Checkout has started a
mobile version. Bango (www.bango.com), Obopay (www.obopay.com), and mBlox
(www.mblox.com) are leading companies that specialize in payments through mobile
devices. Not only that, there are different ways to get paid too! What we developed
so far is payment using credit cards over the mobile web. We can also use Premium
SMS, direct billing, or proximity-based technologies. Let's review these options in bit
more detail now.

Evaluating Mobile Payment Methods
The first step in evaluating mobile payment methods is to understand the context.
What is it that a customer will buy using a mobile device? Of course, mobile
payment is a huge potential market. People who have not made a single transaction
on the Internet are paying good money for Premium SMS-based services. Customers
do not mind paying for a wallpaper or ringtone using their mobile phones. The
resistance increases as the price of the goods go higher.

When we begin to choose a mobile payment method, we must understand the
customer demographics and behavior. The method may vary depending on the
services we are providing too—wallpapers, ringtones, games, movie tickets, contest
voting, clothes, and other goods, or pizzas! We will also need to consider their
location. For some countries, we may be left with only one option of payment, for
others, we may have many.

Once we have figured out the requirements, making a technical choice is easier. Here
are the most common options for mobile payment:

Premium SMS
SMS messages that are charged higher than normal are the most popular mechanism
to get money from customers today. A user will send a text message to a special
number. The network operator will pass on the message to the content provider/
your application. Your application will then deliver the content to the user. Content
may be sent over a WAP Push or any other mechanism. The network operator keeps
most of the money (50% to 60%) and the rest goes to the content provider. After
deducting service charges and taxes, the content provider is typically left with about
20% of the pie.

Chapter 8

[147]

Pros and Cons
Most widely used approach for micro payments.
Network operator manages billing and records. The merchant's job is to
provide content/goods.
Customers are accustomed to this method, both in pre-paid and post-paid
subscription schemes.
The biggest drawback is the share left with the merchant. The only way to
make money here is to have more customers. A bigger pie will make your
piece bigger too!
There may be many implementation aspects involved—starting from the
networks to support, to ensuring the content gets delivered to the customers.

WAP-Based Credit Card Payment
Customers with WAP-capable mobile devices can pay through the mobile web. The
service provider (we, the merchant) uses an online payment gateway. Customers
enter their credit card information through the mobile device and that gets
charged. Many specialized gateways offer mobile phone and PIN number-based
authentication to simplify the process for customers. The payment can also be
initialized by sending a WAP Push message to the customer, opening which will
automatically take them to the payment page.

Pros and Cons
Extends the already available infrastructure of web-based payments.
WAP Payments are more secure and provide integration flexibility to
the merchant.
The content provider can determine whether content will be supported on
the customer's handset or not and sell an appropriate version.
The merchant is not tied to network operators.
The goods or services provided may be anything—not just something the
customer will consume on her or his mobile device.
The biggest difficulty in this system is that only users who are comfortable
using a mobile browser would use this method.
Payment gateways can get very expensive for micro payments.
If the customer does not have a credit card or WAP access, she or he is out of
our reach then!
Network operators do not like this method as it bypasses them!

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Making Money via Mobile Devices

[148]

Direct Billing
It is much easier to add charges for what customers purchased on their mobile
phone bills. Like the Premium SMS system, this method uses the network operators'
existing billing system to charge and manage the transactions. Customers can get
itemized bills like those for credit cards. Financial institutions (banks or credit card
companies) and network operators cooperate to make this happen. The customer
would enter her or his authentication information on a website (or some other
mechanism) and the charges for the purchase will show up in her or his mobile bill
statement. Pre-paid customers will have the charges deducted from their balance
right away.

Pros and Cons
Direct Billing covers most customers and removes the complexity of sending
messages around for billing.
This also makes it less expensive than other methods.
Direct Billing is very flexible in terms of charges, discounts, and billing.
Customers too get itemized bills to show the exact details of the charges and
the goods they bought.
Direct Billing is still not mainstream. Not all operators support it.

Proximity Payment
Proximity Transaction via mobile devices is an interesting method, though not
very popular in the mobile web. The mobile device has a special chip or software/
hardware extension that allows it to communicate with the point-of-sale system.
When the customer goes to the cashier or the POS, the POS and mobile device
communicate with each other, the customer gets a notification on her or his device,
confirms the transaction, and the charge goes through. The communication may
happen over Bluetooth, Infrared, WiFi, RFID, or other carrier. It may also happen
over USSD (Unstructured Supplementary Services Data)—a protocol similar to SMS,
but with real-time connection and special features for financial needs.

Pros and Cons
This method can be used for a variety of needs— both micro and macro
payments. It can also be used for unattended POS like parking booths.
This is a secure method of payment. The customer is physically close to the
point-of-sale system, which creates more confidence.
The method requires special software/hardware to be available. This limits
its reach and feasibility.

•

•

•

•

•

•

•

Chapter 8

[149]

Proximity payment can be a good subsidiary payment mechanism for
the mobile web, but may not be mainstream. E.g. a PIN/barcode can be
generated on the mobile web for a rock concert, and customer will pay for
the ticket while she or he parks the car.

Service Credits, Prepaid Cards, Embedded Smart Cards, and Interactive
Voice Response (IVR)-based systems are some other alternatives available for
mobile payment.

Apart from technical and user needs, you should also consider security aspects of
the payment mechanism you choose. It's easy to steal a mobile phone or hijack
Bluetooth data transmission. Let's get some perspective on what can go wrong in
mobile payments.

Security Concerns in Mobile Payments
Here's a quick list of possible attacks in mobile payments. Knowing what can go
wrong allows you to protect against it!

A mobile device can be infected by a virus. This virus can then capture
sensitive information, including data being transmitted during credit
card-based transactions.
A mobile device can be stolen. The track of transactions through Premium
SMS can be easily found, and new transactions can be made before service
deactivation.
Typical PINs are 4 digit long. Once the attacker knows the phone number of
a person, he or she can try to guess the PIN!
An average mobile user is not an expert on technology or security. She or he
may keep credit card information in plain text on the device itself, or give out
information to anyone else.
Data can be hijacked on the network, over the air, or between the merchant
and the payment gateway, and can be changed and retransmitted.
It is easy to spoof SMS. Spoofed SMS messages can be sent to the payment
gateway for confirming a payment.

Mobile Payment Forum (www.mobilepaymentforum.org) has some excellent white
papers on security and best practices for mobile payment. Going through them will
give you a concrete understanding of the threats and possible solutions for each.

We have now reviewed the different options available for mobile payment. We have
also seen how to use a WAP-based mobile payment system. Let us now turn to SMS.
How can we use SMS for mobile payment?

•

•

•

•

•

•

•

Making Money via Mobile Devices

[150]

Using SMS in Mobile Payment
Almost all the wallpaper and ringtone providers are running on Premium
SMS-based payments. Even the votes we cast using SMS on a television contest are
charged higher than normal. The following figure illustrates how SMS can be used
to place an order.

There are a few important aspects of this flow.

POTR will advertise pizzas in newspapers, television, or any other media.
Along with product information, we will also put up a code.
To order, the customer has to send a message to a special number (called the
Short Code) with a message in a specific format.
The Short Code may be shared by many service providers, and hence
the message may contain a keyword that will determine that it's meant
for POTR.
Along with the keyword, it will also have order information. The item code
and quantity in our case.
The network operator will deliver the message to the SMS Gateway, or Short
Code Service Provider.
The SMS Gateway will make an HTTP GET/POST request to POTR and pass
on the entire message, along with the sender information.
POTR can now process the order the way it wants. In our case, Luigi'll call
back and confirm the order and take the address of the customer!

•

•

•

•

•

•

•

Chapter 8

[151]

The customer is charged a premium fee for sending the message. POTR gets
charged for SMS Gateway services and short code provisioning.
POTR also takes care of order fulfillment. The customer will get a hot pizza
in the next half an hour!

Let's look closer at two components of this flow: Receiving Messages and
Short Codes.

Receiving Text Messages
We have seen how we can send messages using an SMS Gateway in Chapter 6.
The process is as simple as making an HTTP request to the gateway-provided URL
with certain parameters. But when we want to receive text messages, the job gets a
little complicated.

To receive messages, we need a number that people can send messages to and then,
a system that will receive and read messages sent to that number. The final step in
the process is to forward the message to our application via an HTTP request. The
critical part in this process is the number that people can send messages to. We need
to buy such a number from the SMS gateway and pay a monthly fee to keep it alive.

Such a number will normally be the full 12 to 16 digit mobile number. Some services
can also use a "tagged number". A tagged number is an actual mobile number with
some additional digits added at the end. All messages sent to the actual mobile
number, irrespective of the tagged digits, will come to that number. The gateway
can then route the message to the appropriate account based on the tagged numbers
we have purchased.

But Luigi thinks this number is too long! And he wants to get a Short Code!

Getting a Short Code
A short code is like a domain name—an easy-to-remember number that will be used
to access applications online. Luigi, like many others, wants to map the short code to
POTR—and wants to buy 7687 as his short code. A short code is constant across all
network operators in the region (typically a continent). So all mobile users can send a
message to the same short code and we will be able to receive them.

The process of getting a short code can be time consuming—Clickatell takes
up to 90 days. For the US and the UK, you can register short codes from
http://www.usshortcodes.com (US) or http://www.short-codes.com (UK).
Other countries have their own process of acquiring a short code.

•

•

Making Money via Mobile Devices

[152]

Even short codes have two types: Random or Vanity. Vanity short codes are
easier-to-remember codes that are sold at a premium price. Random short codes are
random 4-6 digit numbers. The charges for both random or vanity short codes vary
for different continents.

Assuming we have got the 7687 short code for POTR, let us see how we can receive
messages to it! Not all SMS gateways offer such a two-way messaging facility, but
Clickatell has it. So let's get going!

Receiving Messages via Clickatell
1.	 The first step is to activate two-way messaging on our account. We then

buy the short code and wait for it to function. In the meanwhile, we can go
ahead and do our integration code. Refer to http://www.clickatell.com/
products/two_way.php for more details on two-way messaging activation
with Clickatell.

2.	 To receive messages via HTTP, we must set up a callback URL with our API.
We set this up from our Clickatell Central account.

3.	 Our callback URL will point to receiveMessage.inc.php—a new file we are
creating. In the file, we first validate incoming parameters from Clickatell.
Let's see how this bit looks in the file.

	 <?php
	 // Clickatell sends us following parameters
	 $from = $_REQUEST['from'];
	 $to = $_REQUEST['to'];
	 $timestamp = $_REQUEST['timestamp'];
	 $text = $_REQUEST['text'];

	 if ($from == "" || $to == "" || $timestamp == "" || $text == "")
	 {
	 echo "<p>Invalid parameters.</p>";
	 return;
	 }
	 ?>

4.	 We can now split the text into order parameters then loop over them and add
items to the order. The following code shows the structure of this part, added
right after the previous code.

	 // Process the message here
	 // Message format is "POTR (Item Code)x(Qty)"
	 // Push a space around x so that we can split at space later
	 $text = str_replace('x', ' x ', $text);
	 // Convert all double spaces into single spaces
	 while(ereg(' ', $text))

Chapter 8

[153]

	 {
	 $text = str_replace(' ', ' ', $text);
	 }
	 $text = strtoupper(trim($text));
	 // Now we can split at space to get order parameters
	 $params = explode(' ', $text);
	 $identifier = array_shift($params);
	 if ($identifier != 'POTR')
	 {
	 echo "<p>Invalid command.!</p>";
	 }
	 for($i = 0; $i < count($params); $i = $i + 3)
	 {
	 $itemCode = $params[$i];
	 $qty = $params[$i+2];
	 // Validate the itemCode and qty here

	 // Add to order
	 }
	 // Save the order and notify customer

5.	 We now have a basic structure ready for processing incoming messages!
We do not need to show any output here, because the request will come
from Clickatell.

Sending Messages That Can Be Replied To
Clickatell needs an additional parameter while sending messages to make sure they
can be replied to. This parameter is called "MO" (Mobile Originated) and the value
for that must be 1. When we pass this parameter, Clickatell will set the number in
the "from" parameter as the one that users can reply to. It will also try to route the
message through an appropriate network operator. When the user replies to the
message, Clickatell can pick it up and route it to our application. This completes the
two-way messaging for us!

So far, we have seen many advanced methods of receiving payments via mobile
devices. But some payment gateways make it absolutely easy to get payments via
SMS! Just send an SMS like "send 5 to orders@potr.com"! Sounds interesting? Let's
find out more!

Making Money via Mobile Devices

[154]

Making it Easier—Payment Gateways
Help get More Money!
We mentioned that you have a good choice of mobile payment gateways. Many of
these gateways support more than one method to get mobile payments. For example,
Obopay (among others) makes it absolutely easy to send money to someone. You can
send an SMS to 62729 (in the US) like "send 6505551212 17.95 Pepperoni Pizza plus
Coke" (see the following figure). The money will then be sent to the user with mobile
phone number 6505551212. If the owner of that number does not have an Obopay
account, she or he will get an SMS notification and can sign up to receive money.

Obopay allows payments via WAP, and also special software that you can download
and install on your phone. PayPal too has a "Text 2 Buy" service that allows sending
money with a simple message.

Bango on the other hand, specializes in digital goods under $10. It covers a lot of
regions of the world. And it also complies to Payforit (http://www.short-codes.
com/payforit/)—a payment service supported by all UK mobile network operators.
Bango also provides extensive reports and search integration.

Chapter 8

[155]

Different mobile payment gateways may offer different features. But the cost is also
a major factor to consider. Consider all the costs involved when you decide on the
payment gateway—including short code charges.

We now have a good foundation in mobile payment. Let's review what we learned in
this chapter.

Summary
In this chapter, we learned to receive payments and messages via devices.
Specifically we looked at:

Using SetMobileCheckout and DoMobileCheckoutPayment for payment
through PayPal
Premium SMS, Credit Card, Proximity Payments, and other methods of
Mobile Payment, their pros and cons
An overview of security concerns in Mobile Payments
Receiving Text Messages via Clickatell
The usage of short codes and how to obtain one

Luigi now wants an automated system to process orders coming via phone: an
interactive voice response system that can give order status updates to customers
and even take orders! Let's do some talking in the next chapter then!

•

•

•

•

•

Interactive Voice
Call in 1-800-POTR-NOW. Luigi greets you. He asks you the kind of pizza you want
to order, the size, crust, and toppings you want. He confirms the order and takes
your address, giving a promise to deliver the pizza within half an hour. You finish
the call and wait for the fresh, hot, and delicious pizza to arrive!

Luigi has been doing this for years now. He loves to talk to the customers, but it gets
too much sometimes! He has now come to us to find an alternative. He says, "How
about a computer answering the call and taking the order?"

Hmm, that's an interesting challenge! Let us explore and develop an interactive voice
response (IVR) system for Luigi in this chapter. Specifically, we will look at:

Setting up an interactive voice response platform
Playing pre-recorded audio and text to speech
Accepting keypad inputs
Accepting voice input and doing speech recognition
Performing dynamic calculations on input
Integrating with server-side scripting

Voice-driven systems bring a wealth of opportunities. Unlike a few years ago, it is
possible now to do complex speech recognition. If you had to build an interactive
voice based system earlier, you had to know arcane details about the hardware and
network you were deploying on. Now, with standards-based languages, the job is
much easier.

Let's get on and discover how easily we can build a sophisticated voice-driven
ordering system for Luigi.

•

•

•

•

•

•

Interactive Voice

[158]

First, Some Basics
You wouldn't want to jump off a plane without parachute, right? So how can we get
to the implementation without knowing some fundamentals? The following figure
shows how a typical IVR application may function.

The user calls in using any network or device. The call arrives on the IVR server.
Telephony hardware sitting on the server passes on this call to the IVR software. The
IVR software processes the call—prompting the caller and accepting input via the
keypad or voice. These inputs define the flow of the call. The IVR software optionally
talks to a web or database server to dynamically retrieve or store information. Once
the application work is finished, the call completes.

If only it was that easy! We must bust some jargon before we can get deeper into
these systems!

Busting Some Jargon
As with any technology, IVR is full of its own jargon. Let's first understand it:

VoiceXML (VXML): This is an XML-based language to develop voice-based
applications. There are other options available, but W3C's VoiceXML is
becoming the standard. VoiceXML has elements similar to XHTML, and
works much like a form a customer is filling out. The only difference is that
the form is being filled over a phone call in VoiceXML.
CCXML: Call Control XML allows sophisticated call routing and
conferencing. CCXML can be used in conjunction with VoiceXML.
grXML: Grammar XML allows the speech recognition engine to identify
what was spoken. grXML rules determine valid input for your applications.

•

•

•

Chapter 9

[159]

VoIP: Voice over IP is a protocol to transmit voice over standard IP networks.
Skype and all other voice messengers use VoIP. And if you are wondering
how VoIP relates to IVR, well, you can set up an IVR application that works
over VoIP and you wouldn't need phone lines. People can call in using their
VoIP software and you won't even touch the telecom networks!
SIP: Session Initiation Protocol is a way to make Voice over IP (VoIP) calls.
SIP is used extensively in VoIP applications to establish calls.
DTMF: Dual Tone Multi-Frequency, or "touch tone", input means input via
the phone's numeric keypad.
Text To Speech (TTS): Converting a text to audio. There are many
text-to-speech engines available, and different voices too—e.g. Male
and Female.
Speech Recognition: The process of understanding spoken words and
converting them to text. For IVR applications, it's best to limit speech
recognition to a few words per input.

IVR Infrastructure: Hosted or Owned?
The easiest way to run a voice application is to find a company that hosts
VoiceXML-based IVR applications. It will also give you a number that customers
can call to access your application. There are many service providers in this space
and you can go for the best in your location. You can find some on Ken Rehor's
World of VoiceXML page (http://www.kenrehor.com/voicexml/).

Alternatively, you can also set up your own server. You can get a VoiceXML
platform and hook up a few telephone lines to it via supported interfaces. You can
even get a VoiceXML plugin for your existing PBX system if you are using Asterisk
(www.asterisk.org) or similar PBX software.

For our exploration, we will use Voxeo's Prophecy Server (www.voxeo.com).
Prophecy is a free download, and is free to use for up to two simultaneous
connections. It's standards compliant, and Voxeo also provides hosting. On
top of that, Prophecy comes with a great speech recognition engine, VoiceXML
development tools, and a helpful community! The whole deal is too good to be true!

Time for Action: Setting Up an Interactive Voice
Response Platform

1.	 Download Prophecy from www.voxeo.com, and install it on your machine.
For starters, the "small TTS" version is good.

•

•

•

•

•

Interactive Voice

[160]

2.	 Once it's running, you will get a Voxeo icon in your system tray. Select
Prophecy Home option from there. Go to admin, and get a license key for
your setup. This routine will take you to Voxeo's site. You can take the free
2-port license, and it will get set up automatically.

3.	 Now go to the Voxeo menu in the system tray and open Log Viewer. This
opens up a console that's indispensable for debugging voice applications!
The messages in the log viewer may not make sense right now, but that's OK!
The following screenshot shows how the Log Viewer looks.

4.	 Now, open the SIP Phone from the Voxeo system tray menu. That should
bring up a screen like the one shown in the following screenshot. This is
the phone we will use to test our applications! To get an experience of how
voice applications work, click on the Dial button. You will be greeted by
the default Voxeo application, and from there you can perform a few basic
tests—DTMF detection, auto attendant, conferencing, call back, etc. Go ahead
and try them to ensure everything is set up correctly!

Chapter 9

[161]

5.	 At this time, you can also look at the various tools in the Prophecy Home.
There is a VoiceXML designer and tools to hook up your application with
VoIP service providers. But we are ready with our platform now.

Getting Curious?
If you tried that sample Voxeo application, you will be curious about how things are
working. The SIP Phone is a software phone. It uses SIP protocol to make calls to the
Prophecy server. Prophecy's services are waiting for a call. Once the call comes in,
they look up the location of the file that handles the call—just like how a web server
would process a request. The file is loaded, processed, and audio output delivered to
the caller.

Examining the Log Viewer will tell you a lot about the internals, how different parts
of the Prophecy server work together and how they process user input.

We have got a taste of voice applications, now. Let's start writing our own Pizza
Ordering application!

Designing the Call Flow of Our Application
Just as we need to take care of usability in our mobile web applications, we need
to take care of it in our voice applications as well—in fact, more so in a voice
application. Customers do not like to talk to machines, and when they do, they
simply want to get their job done fast. If the machine cannot understand them,
their frustration will increase. Customers also don't want to go through an endless
chain of questions and number punching. Recall your experience calling a customer
support number.

That's pretty much how our clients will feel about our application if we don't
plan well!

Some principles we can follow in our applications are:

Keep it short and simple.
Don't let the user feel the machine is more intelligent than her or him.
Don't have questions whose response the application can't understand.
Test with real users, in real conditions!

•

•

•

•

Interactive Voice

[162]

Considering all that, let's put together a simple call flow for POTR. The following
figure shows this flow. Notice that we have removed the side dish selection, and
selecting different types of pizzas in this flow. We are also not taking the customer's
address yet. We can add all that later.

The first step is to welcome the caller. Time for some music!

Creating an Application to Play Audio
We want to greet our customers with a nice welcome message. They are used to
hearing Luigi's voice, so we want them to continue with that. Yes, we were talking
about Luigi's voice when we mentioned music! Here are the steps to build our first
IVR application that plays Luigi's welcome greeting!

Time for Action: Creating an Application and
Welcoming Callers

1.	 Using voice recording software (such as Sound Recorder on Windows),
create a short welcome greeting. Save the file in 8bit, 8kHz u-law format as
welcome.wav. Most servers will play back audio in this format, even if you
save it in higher quality, so it's best to save in 8/8 format at the beginning.
We have recorded Luigi's voice and saved the file!

Chapter 9

[163]

2.	 Voxeo applications are stored in the Program Files\Voxeo\www folder by
default. Locate the folder on your computer and create a new folder in it.
Name it potr.

3.	 Copy the welcome.wav file to the potr folder we just created.
4.	 Create a new text file in this folder. Name it index.xml, and enter the

following code in the file.
	 <?xml version="1.0" encoding="UTF-8"?>
	 <vxml version = "2.1">
	 <meta name="maintainer" content="youremail@yourdomain.com"/>

	 <form id="main">
	 <block>
	 <audio src="welcome.wav">
	 Welcome to Pizza On The Run.
	 </audio>
	 </block>
	 </form>

	 </vxml>

5.	 Go to Prophecy Home—Administration. Then Call Routing. Change the
route 1 to point to our application. Set the Route ID as potr, Route Type as
VXML, and the Route URL as http://127.0.0.1:9990/potr/index.xml.
The following screenshot shows how you can do it. Once they are changed
changed, go to the bottom of the page and save the settings.

6.	 Go to SIP Phone now, and dial sip:potr@127.0.0.1. You should be greeted by
your audio recording!

How Did This Work?
127.0.0.1 is the IP address of the local computer. So we are telling the phone to call
an account named potr on this computer. Since we created a route for potr earlier,
Prophecy will know that it has to process the VXML file at the given URL in response
to this call. It will look up that file next.

Interactive Voice

[164]

The index.xml file is a standard XML file, somewhat similar to XHTML. The first
line is a declaration for XML and the next for Voice XML. The meta maintainer tag
lets the server know who's managing this application. This is useful because the
Prophecy server can send detailed reports of all errors to this email address.

The <form> tag defines a "dialog" in voice XML. It's one interaction with the caller.
In our application, we have only one interaction so far, hence only one form. Within
the form we have a <block> of tags. Blocks are sub-divisions of a form. The <audio>
tag is our main tag. We specified the location of the audio we want to play in the
src attribute. The text within the <audio> tags is the alternative text that should be
played as voice if the source file is not found. This is a good backup mechanism and
should always be used.

Now that we have the welcome part done, let's figure out how we can prompt the
caller to select an option and process that.

Making Choices by Key Presses
We want the caller to select if she or he wants to order a pizza online or talk to our
chef. And we want her or him to do this by pressing a key. We need to recognize the
key she or he pressed, and if it is a valid key, redirect control to the next form.

To take any input from the caller, we need to add a field to our VXML form.

<field> is very similar to an <input> tag in HTML. Within the <field> element,
we can <prompt> the user with choices. The user will make a choice after we have
completed prompting. And then, we can recognize what she or he entered.

To do any recognition—voice or keystroke—we need to develop grammar.
The grammar rules will define what are valid inputs, and which field should
be populated with what value when a valid input is received. Once the field is
populated with the recognized value, VoiceXML can check the value of the field and
decide on the next action.

With this knowledge, let us see how to put things together.

Time for Action: Prompting the User for Next Action
1.	 First, let us create a field in the form to accept user input. Add the following

code right after the </block> line in our index.xml file.
	 <field name="option">
	 <grammar src="dtmf_grammar.xml" type="application/grammar-xml"/>
	 <prompt>

Chapter 9

[165]

	 Press one to order a pizza online.
	 Press nine to speak to our chef.
	 Press zero at any time to return to this menu.
	 </prompt>
	 </field>

2.	 The code we added will prompt the user to make a choice. We need
to validate the user input via the grammar. We have already added a
<grammar> tag to the <field> tag, so let us create a new file called
dtmf_grammar.xml with the following code:

	 <?xml version="1.0" encoding="UTF-8"?>
	 <grammar root="MAINRULE" mode="dtmf" xmlns="http://www.
 w3.org/2001/06/grammar" xml:lang="en-US">
	 <rule id="MAINRULE">
	 <item repeat="1">
	 <ruleref uri="#DTMFDIGIT"/>
	 <tag>assign(digit $return)</tag>
	 </item>
	 <tag><![CDATA[<option ($digit)>]]> </tag>
	 </rule>

	 <rule id="DTMFDIGIT">
	 <one-of>
	 <item> 0 <tag>return ("zero")</tag></item>
	 <item> 1 <tag>return ("one")</tag></item>
	 <item> 9 <tag>return ("nine")</tag></item>
	 </one-of>
	 </rule>
	 </grammar>

3.	 In the grammar file we defined that the value should be populated in the
option field name using a <tag> element. Once the field is filled, we would
like to navigate the user to another form we will create. The following code
shows how we can handle this. Add this code after the </field> line in
index.xml.

	 <filled>
	 <if cond="option == 'one'">
	 <goto next="order.xml#pizzaSelection"/>
	 <elseif cond="option == 'nine'"/>
	 <goto next="#callChef"/>
	 <elseif cond="option == 'zero'"/>
	 <goto next="#main"/>
	 </if>
	 </filled>

Interactive Voice

[166]

4.	 We don't have a form with id callChef, or the order.xml file, but let's go
ahead and run this code. It will welcome the caller, prompt her or him to
make a choice, and act on the choice if valid! When you press 1 or 9, you will
hear an error message because the form/file does not exists.

How Does All This Fit Together?
Let's take it bite by bite and understand how it's working.

The <field> tag is required to take any kind of input. The <prompt> tag plays back
all text in it as audio. As a matter of fact, all text within tags in a VXML document
will be played back as audio (almost!). We have named our field as option, and we
will use this name later to check its value.

The grammar file is critical. The first two lines define that it's a Grammar XML file,
the mode of grammar is DTMF (key presses), and that the default rule in this file is
MAINRULE. The DTMFDIGIT rule dictates that it can accept any one of the digits 1, 9, and
0, and when any one of them is received, it should return an appropriate string value
to the calling rule. We can use the numbers 1, 9, and 0 here because we have kept the
mode of the grammar file as DTMF, else we would have to use dtmf-1, dtmf-9, and
dtmf-0. But of course, switching the mode is what good programmers do!

The MAINRULE has a single item that has to occur once and only once. That item is
the DTMFDIGIT rule. A rule can refer other rules using the <ruleref> tag.

Let's look at <tag> now. We have seen three different ways of using it in this file:

<tag>assign(digit $return)</tag>

<tag><![CDATA[<option ($digit)>]]> </tag>

<tag>return ("zero")</tag>

Essentially, <tag> is used to define what should be done as a result of this item. In
the first case, we assign the value returned from the called rule to a variable. In the
second case, we assign the value of the variable to a field in the VXML file. We enclose
it in CDATA as we have < and > in the value. The last case is used in rules that are
called from other rules. In this case, we return the value zero. Returning values like
this allows us to keep the assignment to the VXML field in a single place; and calling
another rule from the main rule allows us to keep things modular and flexible.

Keep a Watch on Your Syntax
Make sure you make your VXML and grXML files in correct syntax.
Wrong syntax is the cause of major development problems in voice
applications. As a test, you can open the XML file with a web browser and
verify that all tags are nested correctly.
If you still have problems, check the messages in the Log Viewer.

•
•
•

Chapter 9

[167]

The <filled> code segment is executed once the grammar is processed and our
option field is populated. Notice how the condition is written in double quotes.
That's why values are enclosed in single quotes in conditions.

The <goto> element facilitates navigation in VoiceXML—just like the <a> tag in
HTML. The value of the next attribute can be another form in the same document,
or another VXML file. You can also point to a particular form within another
VXML file, e.g. if we want to take the caller to pizza selection form with order.
xml#pizzaSelection.

That's the first cut of our pizza ordering application. We promised the caller we will
connect them to our chef if they press 9. Let's see how we can do that now!

Transferring Calls in Voice XML
When we want to connect our customers with our chef, we need to call our 1-800
number and transfer the line. VXML has a simple tag for this: <transfer>. You can
specify the destination number and protocol in it, and the server will automatically
call that number, and bridge the lines when connected.

So this could be the code to connect our caller to our chef:
<transfer name="chefCall" dest="tel:+18007687669" bridge="true"
connecttimeout="20s">

But what if the line is busy? What if someone calls at 3 A.M. and Luigi can't pick up
the phone? And hey, what if someone entered 4 in our first menu? Or what if they
did not understand what to do and kept holding the receiver? We need to build
some error handling!

Handling Errors
Voice XML provides events for many common problems. For example to take some
action when the user input did not match any rules in the grammar, we can use the
<nomatch> tag. We can use the <noinput> tag and write a <prompt> in it, or even
<reprompt> the last prompt if there was no input from the user. We can raise our
custom events and log errors to the log file too.

These events can be handled at the document level, providing a common fallback for
any problems—we will do just that!

Now that we have grasped these concepts, let us review our complete index.xml file.
<?xml version="1.0" encoding="UTF-8"?>
<vxml version = "2.1">
 <meta name="maintainer" content="youremail@yourdomain.com"/>

Interactive Voice

[168]

 <link dtmf="0" next="#main"/>
 <form id="main">
 <block>
 <audio src="welcome.wav">Welcome to Pizza On The Run.</audio>
 </block>
 <field name="option">
 <grammar src="dtmf_grammar.xml" type="application/grammar-xml"/>
 <prompt>Press one to order a pizza online.
 Press nine to speak to our chef.
 Press zero at any time to return to this menu.
 </prompt>
 </field>
 <filled>
 <if cond="option == 'one'">
 <goto next="order.xml#pizzaSelection"/>
 <elseif cond="option == 'nine'"/>
 <goto next="#callChef"/>
 <elseif cond="option == 'zero'"/>
 <goto next="#main"/>
 </if>
 </filled>
 </form>
 <form id="callChef">
 <block>
 <prompt>Please wait while I connect you to our chef
 </prompt>
 <transfer name="chefCall" dest="tel:+18007687669"
 bridge="true" connecttimeout="20s">
 <filled>
 <if cond="chefCall == 'busy'">
 <prompt>Sorry, looks like chef is busy talking to
 someone else.
 </prompt>
 <elseif cond="chefCall == 'noanswer'"/>
 <prompt>Umm.. the chef is not answering. May be he is
 making some pizza!
 </prompt>
 <elseif cond="chefCall == 'far_end_disconnect'"/>
 <prompt>Chef hung up on you. I hope the call went well!
 </prompt>
 <elseif cond="chefCall == 'near_end_disconnect'"/>
 <prompt>Thank you for taking time to speak to our chef.
 I think he liked your call.
 </prompt>
 </if>

Chapter 9

[169]

 </filled>
 </transfer>
 </block>
 </form>
 <noinput>
 <prompt>I did not hear anything. Please try again.</prompt>
 <reprompt/>
 </noinput>
 <nomatch>
 <prompt>Sorry, I did not understand that.</prompt>
 <reprompt/>
 </nomatch>
</vxml>

As we discussed, the <noinput> and <nomatch> elements are written at the
document level, and repeat the last prompt after letting the user know that the
system couldn't match or understand what they said/pressed.

Error handling for the <transfer> tag is a little different. When the transfer tag
executes, the result will be populated in the chefCall field. The status values are
self-explanatory—busy, noanswer, far_end_disconnect, and near_end_disconnect.

Adding Global Navigation with the <link> Tag
One new thing you may notice with this code is the use of a <link> tag near the top
of the document. Here's what we have: <link dtmf="0" next="#main"/>. This tag
takes the caller to the main form, if they press 0 from anywhere in the application.

How about ordering pizzas now? Are we ready for it yet? How will we prompt and
detect which pizza the caller wants? We can give them a set of options and ask them
to press a key to select one of them. But what's the fun in that? How about them
saying what pizza they want and our system understanding it?

Sounds interesting? Let's figure it out!

Recognizing Voice
We know that we can do speech recognition in our voice application. We have
already seen how we can prompt the user to select an option. But how do we
actually do speech recognition?

Interactive Voice

[170]

We offer three pizzas on our voice application: Vegi Delight, Bacons Cheese Treat,
and Pepperoni Spice. If we asked the user which pizza they want, and just caught
any of the words in pizza's names, we can understand what's the match. Let's make
the grammar for this.

<?xml version="1.0" encoding="UTF-8"?>
<grammar root="PIZZA" xmlns="http://www.w3.org/2001/06/grammar" xml:
lang="en-US">

<rule id="PIZZA" scope="public">
<one-of>
 <item> vegi <tag><![CDATA[<pizza "Vegi Delight">]]></tag></item>
 <item> delight <tag><![CDATA[<pizza "Vegi Delight">
]]></tag></item>
 <item> pepperoni <tag><![CDATA[<pizza "Pepperoni Spice">
]]></tag></item>
 <item> spice <tag><![CDATA[<pizza "Pepperoni Spice">
]]></tag></item>
 <item> bacon <tag><![CDATA[<pizza "Bacon Cheese Treat">
]]></tag></item>
 <item> cheese <tag><![CDATA[<pizza "Bacon Cheese Treat">
]]></tag></item>
 <item> treat <tag><![CDATA[<pizza "Bacon Cheese Treat">
]]></tag></item>	
</one-of>
</rule>
</grammar>

If you observe the above code, you will notice it's quite simple. We match any word
from the names of the pizzas and assign the full name of the pizza to a VXML field
called pizza. There is only one rule in the file, and it is also the root rule.

What do we do after recognizing the pizza? We need to ask the user for the crust and
size she or he wants, the topping she or he would like, and then confirm the order.
We will need to store all her or his selections into some variables and then pass them
on to the server where we will save the order.

Storing Variables at the Application Level
Before we can pass variables to the server side, we need to create variables! VXML
provides a mechanism to store variables at application level. Even if you have
multiple XML files in the same application, they can access these variables from the
application scope.

Chapter 9

[171]

We can define an application-level variable at the top of the VXML document
like this: <var name="pizza" expr="''"/>. The expression can contain a valid
expression enclosed in double quotes. We want to start with a blank string, so our
expression will be just two single quotes.

The actual value will be filled once we get the input from the user. We can write a
tag like <assign name="application.pizza" expr="pizza$.interpretation.
pizza"/> to assign the grammar interpretation of the pizza field to the application-
level variable pizza.

$ is a special shadow variable that stores details of the pizza interpretation.
interpretation.pizza refers to the value assigned to pizza field from grammar.
The shadow variable can also tell you the confidence in speech recognition and the
way the word was uttered. But let's stay on our job for now!

Detecting the Caller's Phone Number
If we want to take an order, we need to know who ordered it! How will we do that?
If we can find the caller's phone number, we can obtain the rest of the details from
our existing customer database, or call her or him up and find out the address. Caller
ID is very critical to any telephony provider (how will they bill them otherwise?), so
we can easily get the caller's phone number.

It will be available in the session.callerid variable throughout our application.
And as it goes, even the number they called will be available in the session.
calledid variable!

Time for Action: Let's Put It All Together
Let's put what we have learned about application variables, caller ID, and pizza
grammar in code now.

1.	 Create a file called order.xml in the same directory as index.xml.
2.	 Enter the following code in the order.xml file.
	 <?xml version="1.0" encoding="UTF-8"?>
	 <vxml version = "2.1" application="index.xml">
	 <meta name="maintainer" content="youremail@yourdomain.com"/>
	 <link dtmf="0" next="index.xml#main"/>
	

	 <!-- Variables to store order information -->
	 <var name="pizza" expr="''"/>
	 <var name="size" expr="''"/>
	 <var name="crust" expr="''"/>
	 <var name="topping" expr="''"/>

Interactive Voice

[172]

	 <var name="quantity" expr="''"/>
	 <var name="customer" expr="''"/>

	 <form id="pizzaSelection">
	 <field name="pizza">
	 <grammar src="pizza_grammar.xml" type="application/grammar-xml"/>
	 <prompt>Which Pizza do you want to order? We've got Vegi Delight,
 Pepperoni Spice and Bacon Cheese Treat.</prompt>
	 <noinput>
	 <prompt>Sorry, I could not hear you. Please say again.</prompt>
	 <reprompt/>
	 </noinput>
	 <nomatch>
	 <prompt>Umm, that's not a pizza we make. Please try again.
 </prompt>
	 <reprompt/>
	 </nomatch>
	 </field>

	 <filled namelist="pizza" mode="all">
	 <assign name="application.customer" expr="session.callerid"/>
	 <assign name="application.pizza" expr="pizza$.
 interpretation.pizza"/>
	 <prompt>
	 You chose <value expr="application.pizza" />.
	 </prompt>
	 <goto next="#crustSelection" />
	 </filled>
	 </form>
	 </vxml>

3.	 If you haven't already, create a pizza_grammar.xml file in the same folder
and put in the previous code in it.

4.	 You can now make a call to our application again. Select 1 to order a pizza
and you will be asked to select the pizza you want.

5.	 Say out a word that's not in our grammar file! You will get the nomatch
message and be asked to make the selection again.

6.	 Say a valid name and you will get a confirmation voice letting you know the
pizza you selected!

What's Cooking There?
Notice that we specified an application attribute in our <vxml> tag. This is
necessary to use application-level variables. The value should be the name of the
main XML file—index.xml in our case. Similarly, we have changed the reference in
the <link> tag to point to the main form in index.xml.

Chapter 9

[173]

Comments in VXML are within <!-- and -->, just as in any other XML document.
Our list of application variables is defined before our main form.

We want to customize the message given on different forms, so we have kept the
nomatch and noinput tags within the form.

The <filled> tag has two new attributes. The namelist attribute specifies fields
that should be populated to execute this <filled> code segment, the mode defines
whether all of those fields should be filled or any before the block gets executed.

When we talked about the $ shadow variable earlier, we did not mention that
it's possible to populate multiple fields from the grammar file. Here's that trick.
Something like this in our grammar file:

<item> something <tag><![CDATA[<pizza "Best Pizza"> <size "Best
Size">]]></tag></item>

And this in our VXML:

<assign name="application.pizza" expr="pizza$.interpretation.
pizza"/>
<assign name="application.size" expr="pizza$.interpretation.
size"/>

The pizza and interpretation variables act much like an object.

pizza and size selection become properties of that object.

One more trick is to evaluate expressions as needed to get their value. In our case, we
are evaluating the value of the pizza the user said and informing them in a <prompt>.

We have stored the caller ID in an application variable customer. This is not really
required because we can access it from the session scope later. But we are doing this
to keep things consistent, and also to allow us to extend the way we determine the
customer later.

Understanding Prophecy Error Messages
If you get an MRCP error when you run your application, your grammar
file has a problem. Double-check and correct it. If you get an error
message that says could not connect to dialog, there is a problem in your
VXML code—including linked files.
Looking Under the Hood: Which Words are Being Recognized?
In the Log Viewer, create a new filter. For the filter condition select
Message, contains and put Partial result as value. When you apply this
filter, you will see the results of the speech recognition engine as it does
its work.

Interactive Voice

[174]

We have traveled a good distance. Congratulations!

Now, let's see how we can handle some complex grammar rules. Let's have the user
say both the size and crust in the same prompt and detect what she said!

Writing Complex Grammar Rules
We want to ask the customer to speak the size of pizza and the crust she or he
wants in a single input. She or he could say "twelve inch deep" or "twelve inch deep
crust" or "medium and deep crust", or any other combination. We will define some
intelligent rules to handle all these conditions and return the crust and the size.

Time for Action: Writing Complex Grammars
1.	 Create a new grammar file called size_grammar.xml.
2.	 Let's start with pieces. Let's first write the grammar rule for size. The

following code shows this grammar.
	 <rule id="SIZE">
	 <one-of>
	 <item>twelve<tag>return ("Medium")</tag></item>
	 <item>medium<tag>return ("Medium")</tag></item>
	 <item>fourteen<tag>return ("Large")</tag></item>
	 <item>large<tag>return ("Large")</tag></item>
	 </one-of>
	 </rule>

3.	 Let us add another rule for the crusts now.
	 <rule id="CRUST">
	 <one-of>	
	 <item>deep<tag>return ("Deep")</tag></item>
	 <item>thin<tag>return ("Thin")</tag></item>	
	 </one-of>
	 </rule>

4.	 It's now time to write our main rule, which will call these two rules. Make
sure to make it the root rule in the <grammar> tag.

	 <rule id="SIZECRUST">
	 <item>
	 <item>
	 <ruleref uri="#SIZE"/>	
	 <tag>assign(size $return)</tag>
	 </item>
	 <item repeat="0-1">inch</item>

Chapter 9

[175]

	 <item repeat="0-1">and</item>
	 <item>
	 <ruleref uri="#CRUST"/>	
	 <tag>assign(crust $return)</tag>
	 </item>
	 <item repeat="0-1">crust</item>
	 </item>
	 <tag><![CDATA[<crust (strcat(strcat($size '|') $crust))>
]]></tag>
	 </rule>

5.	 If you noticed, we have concatenated the size and crust with a pipe. That's
the value our VXML crust field will receive. How do we break that apart?
Here's a little secret! VXML supports JavaScript! We can write a JavaScript
function to split the string at the pipe character and return the first or second
part as required. Let's write up this small function in our order.xml , right
after the application variable declarations:

	 <script>
	 <![CDATA[
	 function getValueFromPhrase(phrase, pos)
	 {
	 phrase = phrase.toString();
	 if (phrase.indexOf("|") > 0)
	 {
	 var valArr = phrase.split("|");
	 if (valArr.length-1 > pos)
	 {
	 return valArr[pos];
	 }
	 else
	 {
	 return valArr[valArr.length-1];	
	 }
	 }
	 return phrase;
	 }
]]>
	 </script>

6.	 Now let's add the crustSelection form to our order.xml file. Add the
following code after the pizzaSelection form.

	 <form id="crustSelection">
	 <field name="crust">
	 <grammar src="size_grammar.xml" type="application/grammar-xml"/>

Interactive Voice

[176]

	 <prompt>We make medium and large pizzas with thin crust or
 deep crust.
	 What size and crust do you want?
	 </prompt>
	 <noinput>
	 <prompt>Sorry, I could not hear you. Please say again.</prompt>
	 <reprompt/>
	 </noinput>
	 <nomatch>
	 <prompt>Sorry, I did not understand. Please say size followed
 by crust choice.</prompt>
	 <reprompt/>
	 </nomatch>
	 </field>
	 <filled namelist="crust" mode="all">
	 <assign name="application.size" expr="getValueFromPhrase(
 crust$.interpretation.crust, 0)"/>
	 <assign name="application.crust" expr="getValueFromPhrase
 (crust$.interpretation.crust, 1)"/>
	 <prompt>Ok. <value expr="application.crust" />
 <value expr="application.size" />.</prompt>
	 <goto next="#toppingSelection" />
	 </filled>
	 </form>

7.	 That completes it. Give the app a shot and see how you get the crust and
size selections.

What Just Happened? How Did it Work?
Here's some insight on what's happening!
The main grammar rule—SIZECRUST—calls in the size and crust rules. In between,
it puts in items that may or may not occur in the input, like inch, and/or crust.

strcat is a function available in grammar XML that allows you to join two strings.
Note that there is no comma between the two arguments, and the order of execution
is from the innermost to the outermost.

Our JavaScript function takes a string and an index position. It converts the input
parameter to a string if it is an object. Then it checks if there is a pipe character in
the string. If there is, it will split the string at the pipe. It validates the pos argument
next, returning the item at that position if valid, and the last element if invalid. If no
conditions are matched, it returns the string version of the input phrase.

Chapter 9

[177]

The VXML code is quite similar to what we have seen so far, except the assignment
of value to the application variable. We call the JavaScript function with the
interpretation of the crust field, and pass 0 or 1, telling the function to return the
first or second value. The prompt after that confirms the values set in the
application variables.

Selecting the Topping and Quantity
Selecting the topping and quantity can be done just like selecting pizzas. For
toppings, we have mushroom and olive available. A simple <one-of> rule will
suffice here. For quantities, the value can range from 1 to 9. We can recognize and
handle them like this: <item>one<tag><![CDATA[<qty "1">]]></tag></item>.

We are not going to cover toppings and quantity here to save space. But once you
have added the forms and grammar for them, we can go ahead and confirm the
order details with the customer, and submit the order to the server for further
processing. Shall we jump on to that now?

Confirming and Submitting an Order
Once we have got all the order details, we would like to confirm them with the
customer before we place the order. This is important because we want to eliminate
problems of bad speech recognition. After confirmation, we would send it to our web
server. The order should be saved and added to our normal order queue.

Time for Action: Confirming and Submitting
an Order

1.	 The first thing we want to do is to repeat what options the customer has
chosen, and ask her or him to confirm them. The following code shows the
confirmOrder form that we need to add right after the quantity selection
form is complete.

	 <form id="confirmOrder">
	 <field name="confirm" slot="confirm">
	 <grammar src="confirm_grammar.xml" type="
 application/grammar-xml"/>

	 <prompt bargein="false">
	 You ordered <value expr="application.quantity" /> <value
 expr="application.size" /> <value expr="application.pizza" />
	 with <value expr="application.crust" /> crust and <value
 expr="application.topping" /> topping.
	 Should I take the order?

Interactive Voice

[178]

	 </prompt>
	 </field>
	 <filled namelist="confirm" mode="all">
	 <if cond="confirm == 'Yes'">
	 <goto next="#placeOrder" />
	 <elseif cond="confirm == 'No'" />
	 <prompt>Ok. Let us do it again.</prompt>
	 <goto next="#pizzaSelection" />
	 </if>
	 </filled>
	 </form>

2.	 Our confirmation grammar is simple. We check for different words the
customer can say to confirm the order and return a Yes or a No. Here's how it
will look:

	 <?xml version="1.0" encoding="UTF-8"?>
	 <grammar root="CONFIRM" xmlns="http://www.w3.org/2001/06
 /grammar" xml:lang="en-US">
	 <rule id="CONFIRM">
	 <one-of>
	 <item>yes<tag><![CDATA[<confirm "Yes">]]></tag></item>
 <item>yep<tag><![CDATA[<confirm "Yes">]]></tag></item>
 <item>yeah<tag><![CDATA[<confirm "Yes">]]></tag></item>
 <item>no<tag><![CDATA[<confirm "No">]]></tag></item>
 <item>nope<tag><![CDATA[<confirm "No">]]></tag></item>
 <item>nah<tag><![CDATA[<confirm "No">]]></tag></item>
	 </one-of>
	 </rule>
	 </grammar>

3.	 Once the order is confirmed, we need to place it on the server. For this we
need to send all application-level variables that we collected to our web
server. As you may have guessed, this can be achieved with one tag. The
<submit> tag. We specify the server URL in the next attribute, and the
variables to pass in namelist. When control comes to this place, Prophecy
will make a request to the URL, passing these variables, and play back the
response to the caller online. The following code shows the VXML code for
the placeOrder form.

	 <form id="placeOrder">
	 <block>
	 <submit next="http://localhost/potr/takeIVROrder.php"
 namelist="application.pizza application.size
 application.crust application.topping application.
 quantity application.customer" method="post"/>
	 </block>
	 </form>

Chapter 9

[179]

4.	 On the server side, we need to create a new page called takeIVROrder.php.
We can do all the business logic for handling IVR orders there. We can find
a customer record from our database based on the caller ID of the person
ordering, or insert a new record for that customer. If we have record for the
customer in our database, we don't need to get their address; else, we need to
call her or him back and take the address. The following code is a sample that
simply writes out all the incoming variables to a text file. We have omitted
the implementation for this example.

	 <?php
	 header("Content-Type: text/xml");
	 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>";
	 ?>
	 <vxml version = "2.1">
	 <meta name="maintainer" content="youremail@yourdomain.com"/>
	 <?php
	 file_put_contents("vars.txt", print_r($_POST, true));
	 ?>
	 <form id="orderPlaced">
	 <block>
 <prompt>Order confirmed. We will call you back soon to
 take your address. Thank you.
	 </prompt>
	 </block>
	 </form>
	 </vxml>

5.	 Now that we have done everything, it's time to give our application a shot.
Come back to the SIP phone, and dial into the application. Select your pizza,
size, and crust, the topping you want, and the quantity you want to order.
Listen to the confirmation; say yes, and bingo, the order is in!

How Did It Turn It All Around?
We used all the application variables we gathered in the prompt to confirm the
order. If you noticed we stuck a bargein="false" attribute on our <prompt> to
make sure nothing can disturb the process. Once we got the confirmation of the
order, we passed a list of variables to our PHP script.

The variables will come in PHP a little differently from what we mentioned. They
will become application_pizza, application_size, and so on. For now, we
simply write them out to a text file to confirm the order goes through.

Interactive Voice

[180]

It's critical that our PHP outputs valid VXML code. Prophecy will not be able to play
it back to the caller otherwise. Worse yet, it will play an error message to the user.
To ensure success here, we put the proper XML header and prolog at the start of the
PHP file. The rest of the code in PHP is standard VXML code.

You can generate your full voice XML application using PHP. PHP can
pull up information from the database, based on the user's inputs, and
generate VXML or grXML content. All we need to ensure is valid VXML
and grXML code so that the server can play it back as audio.

If you are waiting for more, there is none! We have achieved the titanic feat of taking
a complete pizza order on the phone. Here are some online resources that will help
you in developing voice applications:

Voxeo's VXML Developers Guide: http://www.voicexml-guide.com/
Ken Rehor's World of Voice XML: http://www.kenrehor.com/voicexml/
Reviews, Events and more: http://www.voicexmlplanet.com/

What's next in VXML? http://www.voicexml.org/. Now, let's see what we did in
this chapter!

Summary
In this chapter, we learned to develop voice-enabled dynamic applications.
Specifically:

Understanding the basics of IVR and telephony
Setting up a Voxeo Prophecy server for development
Creating voice applications using VXML and grXML grammar
Playing pre-recorded audio and automatic text to speech
Accepting keypad inputs
Recognizing different spoken words via simple to complex grammars
Processing data in VXML with JavaScript
Integrating with server-side scripting and generating dynamic VXML pages

Luigi is extremely pleased now! He's got everything he wanted, but then he wants
some more! Luigi's heard enough of AJAX for the web, and he is wondering if we
can do AJAX on the mobile web! AJAX on the mobile web? Here comes the
next chapter!

•

•

•

•

•

•

•

•

•

•

•

Mobile AJAX
AJAX and Web 2.0 are two expressions that web developers have uttered a million
times in the last two years. Apart from being hot buzzwords, they actually represent
advances in technology that facilitate building better web applications. AJAX is now
possible even on mobile devices, and Luigi is interested in exploring what can be
done for Pizza On The Run.

In this chapter, we will learn how to use AJAX on mobile devices. We will
specifically look at:

Getting pizza recipes via AJAX
Enabling AJAX in forms
Understanding iPhone application development
More of building rich mobile apps

Mobile devices have limited CPU power, memory, and network speed. These restrict
the usage of scripting in the browser. Most of the time, it's not feasible to allow
scripting. Loops in JavaScript and XML DOM (Document Object Model) processing
can also drain the batteries as they involve a lot of CPU cycles. A mobile device can
be on the move, so the network connection may drop and reconnect and is not
very reliable.

But with better phones, it is now possible to run JavaScript-based AJAX applications
on mobile devices. On the extreme side, AJAX applications are the only way to build
and run custom applications on a device like the iPhone.

Let's now see how we can use these technologies!

•

•

•

•

Mobile AJAX

[182]

Getting Pizza Recipes via AJAX
Luigi wants to build a social tool where visitors can participate. He wants to share
pizza recipes, and even allow visitors to contribute their own recipes. But more
importantly, he wants to allow them to comment on a recipe, share their experiences
cooking that recipe, and get connected with other pizza lovers!

The following figure shows how the page will be laid out for the new Recipes section
on Pizza On The Run. The recipe and comments are the main sections of the page.
Navigation at the top will allow visitors to traverse between recipes.

Navigation

Add Comment
Form

Title

Photo

Pizza Recipe

Meta Info

Comments

Devising our AJAX Strategy
We are assuming that you have a fair understanding of the basic AJAX concepts.
If you are new to AJAX, it's a good time to read Jesse James Garrett's article at
http://www.adaptivepath.com/publications/essays/archives/000385.php
that started the whole AJAX revolution. Googling for AJAX too will give you
a wealth of information on the topic.

If you think about it, the main advantage of AJAX is reduced page reloads. We can
retrieve only the data that we want from the server, and change only the part of the
page that we want to change. This makes the interface more interactive and fluid. For
our recipes page, we want to bring the recipe and comments via AJAX. The comment
submission too will happen over AJAX.

Chapter 10

[183]

But hey, AJAX has XML in it! Are we really going to use XML? If we use XML,
the mobile browser has to process the XML, format it, and then display it. This
could take up a lot of CPU power. So what can we do? Simple; don't use XML! Use
XHTML! We will format the output on the server, and the client will only have to
display that at an appropriate place in the page. This will make our job easier. So as
such, we will be using AJAH (Asynchronous JavaScript and HTML) and not AJAX!
Another caveat is the use of JavaScript! The purpose of mobile AJAX is to make
things faster. So, we need to ensure that our JavaScript neither takes too long to
download, nor takes the CPU for a spin!

If you have worked with AJAX on the Web, you will be aware of many libraries and
tools available to build AJAX applications. Dojo, Prototype, YUI, and Script.actulo.
us are some of the most popular toolkits. Unfortunately, there are no such libraries
available for mobile AJAX as of this writing. There are a few projects under way, but
none released to the public. A mobile AJAX library must be lightweight and ideally,
be adapted as per the device—exposing features supported only by that device. If we
don't want to get into a lot of complexity, implementing basic AJAX is very simple.
We can use the XMLHttpRequest object to build our AJAX application.

What we will do is extend the Frost AJAX library. Frost is the first mobile
AJAX library, and is still under development. Available from Paving Ways
(www.pavingways.com), Frost provides the basic AJAX functions. We will write
additional JavaScript code to serve our needs and glue things together.

On the back end, we will write code that will retrieve the recipe and comment
information. One important thing we need to keep in mind here is that only the
recipe and comments HTML code should be outputted. No <body> or other XHTML
tags are necessary. This is because whatever our back end will output will come to
the AJAX call. And that is what will be inserted into the <div> that shows recipes
and comments. If we have extra HTML code, that too will be inserted in the <div>,
making our document syntactically incorrect. It may also affect the way the page
is displayed.

We have a problem to solve here. All our back end gets routed through index.php,
hence the header and other files get included automatically on all calls. We do not
need them on our AJAX calls. To avoid this, we will use PHP's output buffering
system. In index.php, we will start buffering the output via ob_start(). At the end
of index.php—once all operations are done—we will flush the output buffer with
ob_end_flush(). This will ensure other pages work well. Now at the beginning of
our AJAX handler, we will simply do an ob_end_clean() to discard current output
buffers and stop further buffering. We can then output whatever we want. At the
end of our handler, we will exit(), so that no footer code will be shown as well.

Mobile AJAX

[184]

In terms of page structure, we will have a few <div> tags. The main div will be the
one that will hold the recipe and comments. We will have a div for the comment form
also—but it will be hidden at the start. We will have a <script> area where we will
keep all our functions that use the Frost library and perform operations that we want.

We now have the fundamentals in place. Let's go ahead and implement the
recipes page!

Time for Action: Showing Recipes
1.	 We need to first create two tables—one for recipes and the other for

comments. The following code shows the SQL to create these tables.
	 CREATE TABLE `recipes` (
	 `id` int(10) unsigned NOT NULL auto_increment,
	 `submitter` varchar(75) NOT NULL,
	 `submitterPhone` varchar(20) NOT NULL,
	 `photo` varchar(30) NOT NULL,
	 `dateUpdated` timestamp NOT NULL,
	 `title` varchar(30) NOT NULL,
	 `basicInfo` mediumtext NOT NULL,
	 `ingredients` mediumtext NOT NULL,
	 `directions` mediumtext NOT NULL,
	 PRIMARY KEY (`id`)
) COMMENT='Hot recipes';
	

	 CREATE TABLE `recipeComments` (
	 `id` int(10) unsigned NOT NULL auto_increment,
	 `recipeId` int(11) unsigned NOT NULL,
	 `submitter` varchar(75) NOT NULL,
	 `submitterPhone` varchar(20) NOT NULL,
	 `dateUpdated` timestamp NOT NULL,
	 `comment` mediumtext NOT NULL,
	 PRIMARY KEY (`id`)
) COMMENT='Comments on recipes';

2.	 We can now add a few recipes and comments via phpMyAdmin, so that
when we do the rest of the code, we have some data to display. While
adding data, please ensure that you use proper recipeId values in the
recipeComments table.

3.	 Let us create the Recipe class now. It will extend the BaseModel class we have
been using in the rest of the POTR code, and will make it easy to retrieve or
save data from the recipe table. The following code shows this class.

	 <?php
	 class Recipe extends BaseModel
	 {
	 public $_submitter;
	 public $_submitterPhone;

Chapter 10

[185]

	 public $_photo;
	 public $_dateUpdated;
	 public $_basicInfo;
	 public $_ingredients;
	 public $_directions;		
	

	 public function __construct($tableName = "recipes",
	 $data = null)
	 {
	 parent::__construct($tableName, $data);
	 }
	 }
	 ?>

4.	 Similarly, we can create the RecipeComment class. Let's add a function to get
all comments for a particular recipe too.

	 <?php
	 class RecipeComment extends BaseModel
	 {
	 public $_recipeId;
	 public $_dateUpdated;
	 public $_submitter;
	 public $_submitterPhone;
	 public $_comment;
	

	 public function __construct($tableName = "recipeComments",
	 $data = null)
	 {
	 parent::__construct($tableName, $data);
	 }
	

	 public function GetCommentsForRecipe($recipeId)
	 {
	 return $this->GetAll("recipeId = '$recipeId'",
 "dateUpdated desc");
	 }
	 }
	 ?>

5.	 It's time to create a PHP file that will show the recipes to the visitor. This
file will also make the AJAX calls and provide a form to comment on a
recipe. First, let's get the structure ready. Refer to the following code for
recipes.inc.php's first cut!

	 <div id="jsarea">
	 <script type="text/javascript" src="assets/frost.js"></script>
	 <script type="text/javascript">
	 <![CDATA[
	 // Check for AJAX support. If not supported, show a warning
	 if (!TestXHR())

Mobile AJAX

[186]

	 {
	 document.write("Your browser has JavaScript support, but no
 AJAX support.");
	 }
	 else
	 {
	 // Get a recipe via AJAX
	 }
]]>
	 </script>
	 <noscript>Sorry your browser does not support
 JavaScript!</noscript>
	 </div>
	 <div id="main">
	 <h2>Hot Recipes</h2>
	 <p>Latest recipes from POTR and our visitors!</p>
	 </div>
	 <div id="commentForm"></div>

6.	 You may have noticed the frost.js there and the call to the TestXHR()
function. This is the Frost mobile AJAX library we talked about. The
TestXHR() function checks if the browser has AJAX support. If the browser
does not have AJAX or JavaScript support, we show an appropriate message.
Ideally, we should provide such browsers with another page from which
they can see recipes in a non-AJAX way. A nice article on dev.mobi explains
how to do this (http://dev.mobi/node/557). We will just focus on the
AJAX way in our examples. So let's see what's in the frost.js file.

	 var xhr = false;
	 var dgbcnt = 0;

	 // preload loading image
	 loading = new Image();
	 loading.src = "assets/loading.gif";

	 function dbg(message){
	 dgbcnt ++;
	 var messobj = document.getElementById('debug');
	 if(messobj) messobj.innerHTML += dgbcnt+': '+message+'
';
	 }

	 function TestXHR(){
	 // check for XHR support
	 var xhrsupport = XHRInit();
	 if(xhrsupport){
	 return true;
	 }
	 return false;

Chapter 10

[187]

	 }

	 function XHRInit() {
	 if(xhr){ return "true 1"; }
	 else {
	 req = false;
	 if(window.XMLHttpRequest) {
	 try { xhr = new XMLHttpRequest(); return
 "XMLHttpRequest Object"; }
	 catch(e) { xhr = false; return false; }
	 return false;
	 } else if(window.ActiveXObject) {
	 try { xhr = new ActiveXObject('Msxml2.XMLHTTP');
 return "ActiveX"; }
	 catch(e) {
	 try {xhr = new ActiveXObject('Microsoft.XMLHTTP');
 return "ActiveX";} catch(e) { xhr = false;
 return false; }
	 }
	 return false;
	 } else { xhr = false; return false; }
	 }
	 }

	 function XHReq(url, responsediv, addcontent, returnvalue){
	 if(XHRInit()){
	 xhr.open('POST', url, true);
	 xhr.setRequestHeader('Content-Type', 'text/html;
 charset=utf-8');
	 xhr.onreadystatechange = function(){ if(xhr.readyState
 == 4){ ProcessXHR(xhr, responsediv, addcontent); } }
	 xhr.send('');
	 }
	 return returnvalue;
	 }

	 function ProcessXHR(xmlHttpReq, responsediv, addcontent){
	 var responseText = xmlHttpReq.responseText ? xmlHttpReq.	
 responseText : '';
	 if(addcontent){document.getElementById(responsediv).innerHTML
 += responseText;}
	 else {document.getElementById(responsediv).innerHTML =
 responseText;}
		 }

	 function ShowDetails(url, responsearea, addcontent, returnvalue){
	 document.getElementById(responsearea).innerHTML = '<img
	 class="loadimg" src="'+loading.src+'" alt="loading..."
 	 width="16" height="16" />';
	 return XHReq(url, responsearea, addcontent, returnvalue);
	 }

Mobile AJAX

[188]

7.	 The library now gives us functions that we can use to implement AJAX.
XMLHttpRequest and response handling are essential parts of AJAX. But we
still have to write our back end and extra JavaScript functions that will glue
things together. Let us first build a PHP back end that will give us recipe
details and comments on them. Below is the code in recipeHandler.inc.
php—the file that will be invoked via index.php through AJAX.

	 <?php
	 ob_end_clean();
	 if (!$_REQUEST['what'] || $_REQUEST['what'] == 'show')
	 {
	 // Replace new lines with list item tags so that we can show
 // a nice display
	 function splitToList($string)
	 {
	 return ''.str_replace("\n", "",
	 trim($string)).'';	
	 }
	 if(!isset($_REQUEST['num']))
	 {
	 $_REQUEST['num'] = 0;
	 }
	 $recipe = new Recipe();
	 // Get recipe details - limit at num - this will
 // fetch only one recipe
	 $result = $recipe->GetAll("", "id desc", "1",
 $_REQUEST['num']);
	 if (count($result) == 1)
	 {
	 foreach($result as $item)
	 {
	 echo '<h2>'.$item['title'].'</h2>
	 <img src="assets/recipes/'.$item['photo'].'" alt="'
 .$item['title'].'" />

	 <h3>Basic Information</h3>'.splitToList(
 $item['basicInfo']).'

 <h3>Ingredients</h3>'.splitToList($item['ingredients']).'

 <h3>Directions</h3>'.splitToList($item['directions']).'
 <p>Submitted by '.$item['submitter'].' on '.$item[
 'dateUpdated'].'</p>';

 // Pass a hidden field. This will be required while adding
 // comments later on
 echo '<form name="recipeHiddenInfo"><input type="hidden"
 name="recipeId" value="'.$item['id'].'" /></form>';

Chapter 10

[189]

	 // Get the comments for this item
	 $rc = new RecipeComment();
	 $comments = $rc->GetCommentsForRecipe($item['id']);
	 if (count($comments) > 0)
	 {
	 echo '<h3>Comments:</h3>';
	 foreach($comments as $comment)
	 {
	 echo '<p>'.$comment['comment'].'

	 By: '.$comment['submitter'].' On: '.$comment[
 'dateUpdated'].'</p>';
	 }
	 }
	
	 }
	 }
	 else
	 {
	 echo '<p>Sorry, no more recipes found.</p>';
	 }
	

	 }
	 else if ($_REQUEST['what'] == 'comment')
	 {
	 // Comment saving code here
	 }
	 exit;
	 ?>

8.	 That was a lot of PHP code! We are now ready to add JavaScript functions
and get recipes! Let's give it a shot. Let's add some code to our recipe.inc.
php in the JavaScript section. We will get a recipe if our AJAX test succeeds.
Below is this code. The code to make the AJAX call is highlighted.

	 <div id="jsarea">
	 <script type="text/javascript" src="assets/frost.js"></script>
	 <script type="text/javascript">
	 <![CDATA[
	 var num = 0;
	 var reqNum = 0;

	 function GetRecipe(index)
	 {
	 reqNum = index;
	 if (reqNum >= 0)
	 {

Mobile AJAX

[190]

	 ShowDetails('?action=recipeHandler&what=show&num='+
 (reqNum), 'main', false, false);
	 }
	 }
	 if (!TestXHR())
	 {
	 document.write("Your browser has JavaScript support, but no
 AJAX support.");
	 }
	 else
	 {
	 GetRecipe(0);
	 }
]]>
	 </script>
	 <noscript>Sorry your browser does not support
 JavaScript!</noscript>
	 </div>

9.	 If all went well, you should see something like the following figure in your
mobile browser!

Chapter 10

[191]

10.	 If you face any problem, add an alert(responseText); after the first line in
the ProcessXHR function in frost.js. That will show you the HTML code
coming from the server. You may also use the dbg()function for any other
debugging needs. If your mobile device does not support JavaScript, the
following figure is what you may see.

What's Going on in the Background?
We created a platform for building AJAX-enabled applications. The way it works
is that when the page gets loaded in the browser, the JavaScript will execute and
check if the browser has XMLHttpRequest (XHR) object support. If it does, we call
the GetRecipes function with 0 as argument. That in turn calls the ShowDetails
function of Frost library. This put up a loading image in the main div and makes
an XHR request through the XHReq function. This is an asynchronous call, and the
ProcessXHR function will be called once the server's response is received.

On the server, the PHP code makes a query, and limits it for one record starting from
0. Once we get the recipe data, we format it using some nice HTML. We also use a
custom function to split the data at new line characters and show it in a list format.
We are using a form and a hidden variable that stores the recipeId in the output.
This will be used later in the JavaScript function that submits a comment on a recipe.
Once this is done, we check the recipeComments table for comments made on this
recipeId. If we find any, we include them also in the output.

All this output from PHP comes in ProcessXHR as responseText. And we put that
in the main div. As we do this, the page content changes and shows us our recipe!
And all this happened without reloading the page!

Mobile AJAX

[192]

What if Your Device Does Not Support AJAX?
If the devices you are testing on do not support AJAX, it would be difficult to test.
One option is to use a service like DeviceAnywhere (www.deviceanywhere.com)
that allows you to remotely test on a variety of mobile devices and carriers. You get
to test on the actual devices remotely, and it's very convenient to test multiple real
devices from a single place. The following screenshot shows our POTR application
running in an iPhone over DeviceAnywhere.

If you do not want to use DeviceAnywhere, you can test with desktop versions
of Opera and Safari browsers. Many mobile browsers these days are based on
the WebKit engine (http://webkit.org/) and you can test on that too. But do
remember that testing on real devices may have varying results.

Chapter 10

[193]

On the other side, what if your target users don't have AJAX support? It's always a
good practice to have a backup! Though AJAX support is increasing, do take some
time to build a fallback for your production applications. The dev.mobi article
mentioned earlier shows a good example of how you can do this.

While doing AJAX, don't go overboard. Animated "loading" images,
animations, and other eye candy may actually hinder the usability of your
application because of the download size and CPU needs. Stay focused on
the user!

Adding Navigation
We got one recipe on the page. But we need a simple way to navigate within the
recipes. This is very easy now with our GetRecipe function. What we need to keep
track of is the current index of the recipe. And we can add one or subtract one from it
to get the next or previous recipe. Let's code it up!

Time for Action: Adding Navigation for Recipes
1.	 If you noticed, in the previous code, we have checked if the requested index

is greater than zero. If it is, only then we make the request to get the recipe.
At the start of our JavaScript, we have initialized two variables—num and
reqNum. Variable num will store the index of the current recipe and reqNum is
the index of the requested recipe.

2.	 What remains is to set the num to reqNum once the requested recipe is
received! Let us write a function that does this in recipe.inc.php. We will
then call this function once we get the XHR response. Below is the code.

	 function ResultProcessed()
	 {
	 num = reqNum;
	 }

3.	 Next, let us modify frost.js ProcessXHR() to call our function once
the response is processed. This means once the recipe is displayed,
ResultProcessed() will be called. If you are going to use frost.js
in other pages, you should make sure that you have a function named
ResultProcessed() on the page, otherwise it will throw up a JavaScript error.

	 function ProcessXHR(xmlHttpReq, responsediv, addcontent){
	 var responseText = xmlHttpReq.responseText ?
 xmlHttpReq.responseText : '';
	 if(addcontent){document.getElementById(responsediv)
 .innerHTML += responseText;}

Mobile AJAX

[194]

	 else {document.getElementById(responsediv).innerHTML
 = responseText;}
	 ResultProcessed();
	 }

4.	 What remains now is to link up the next and previous recipes via JavaScript.
Let's add this at the top of our recipes.inc.php. Below is the code.

	 <p>Prev recipe
 - Next recipe
 - <a href="#commentForm" onclick="JavaScript:ShowCommentForm();
 ">Add a Comment</p>

5.	 That's all! Clicking on Next or Prev on our recipes page will load up the
appropriate recipe. When all recipes are finished, we will get an apology
message saying there are no more recipes! The following screenshot shows
what the navigation looks like, on the iPhone.

Yes! Simply setting a variable to hold the current index and adjusting it on fetching
the next or previous recipe does the trick for us. The PHP back end expects just the
index, and it fetches one recipe from there. When the code is done, it feels so fluid
navigating among recipes! That's the power of AJAX!

Adding Comments
We want to allow users to submit comments on the recipes displayed. This will
build a community around our recipes service. We have already added a link for
submitting comments. Let's see how we can develop the code for it.

Chapter 10

[195]

Time for Action: Submitting Comments
1.	 Let us add the comment form to recipe.inc.php first. We will keep it in a

<div> and hide it by default. This will save some screen space. Below is the
form code.

	 <div id="commentForm" style="display:none">
	
	 <h2>Add a Comment</h2>
	 <form name="formComment">
	 <fieldset>
	 <input type="hidden" name="recipeId" value="0" />
	 Your Name: <input type="text" name="submitter" value=""
 size="20" maxlength="35" />

	 Your Phone: <input type="text" name="submitterPhone" value=""
 size="20" maxlength="35" />

	 Comment: <textarea name="comment" value="" cols="35"
 rows="10" ></textarea>

	 <input type="button" value="Contribute" onClick="
 SubmitComment()"/>
	 </fieldset>
	 </form>
	 </div>

2.	 In the link we added, we have set the href to #commentForm, which is the
anchor ID. The page will scroll to the form when the link is clicked. Let us
write a function that will show the form if it's hidden, and hide it if
it's visible.

	 function ShowCommentForm()
	 {
	 var elm = document.getElementById("commentForm").style;
	 if (elm.display == "none")
	 {
	 elm.display = "block";
	 }
	 else
	 {
	 elm.display = "none";
	 }
	 }

Mobile AJAX

[196]

3.	 When the user clicks the link, she or he will see the form. On clicking the
button in the form, we are calling a JavaScript function SubmitComment().
What we need to do in this function is get the recipeId from the hidden
form that the AJAX call has sent, collect other variables from the comment
form, and send them to the recipeHandler.

	 function SubmitComment(frm)
	 {
	 // Copy the recipeId value from the hidden form
 // received from AJAX
	 // to the comment form
	 var src = document.recipeHiddenInfo;
	 var target = document.formComment;
	 var url = "?action=recipeHandler&what=comment";
	 url += "&recipeId=" + src.recipeId.value;
	 url += "&submitter=" + target.submitter.value;
	 url += "&submitterPhone=" + target.submitterPhone.value;
	 url += "&comment=" + target.comment.value;
	 ShowDetails(url, 'commentForm', false, false);
	 }

4.	 Now we can write the back end code to save the comment to the table. It's
straightforward now that we have created the RecipeComment class. We need
to add code to the recipeHandler to save the comment when the value of
the what variable is comment! We can populate the class with the data coming
in the request, set the date, and save it. Below is the code.

	 else if ($_REQUEST['what'] == 'comment')
	 {
	 $rc = new RecipeComment("recipeComments", $_REQUEST);
	 $rc->dateUpdated = date("Y-m-d H:i:s");
	 if ($rc->Save())
	 {
	 echo "<p>Comment saved.</p>";
	 }
	 else
	 {
	 echo "<p>Could not save your comment.</p>";
	 }
	 }

5.	 The following screenshot shows how submitted comments and our form
may display in a mobile browser. It's actually just like any other browser!
And if we want to make it a bit more interesting, we can send back the
actual comment in the output along with the message that the comment was
saved. This will display the comment to the user, giving her or him instant
gratification! That's what we want, isn't it?

Chapter 10

[197]

What's the Deal with All that Form Code?
The biggest piece in the comments code is the form processing. It's the JavaScript
way of accessing values from form elements. The source and target bit are simply
pointers to two forms. The source form is the one we got from the GetRecipe()
request, and the target form is the one the user filled. We pick up the recipeId
from the source form (as without that, our comment will be orphaned), club it with
other values from the target form, and push the URL across. We are using the POST
method to send variable values via AJAX, but it is also possible to use GET.

Alright, so we have our AJAX-driven Hot Recipes section up on POTR. We have
added another form for visitors to submit their own recipes, and also a comment
approval system—of course we don't want spam bots to flood our recipe pages with
advertisements to increase the strength/size of particular body parts! We have also
created fallback systems for people who do not have AJAX devices.

So let's think about what else is possible with AJAX on the mobile.

Mobile AJAX

[198]

I Want More AJAX on My Mobile!
You can do wonders with AJAX. Just like how people have built breakthrough web
applications using AJAX, you can build a breakthrough mobile application using
AJAX. Or if you already have a great web app, you can port it to mobile using AJAX.
You can use effects and animation, drag and drop, and many other things. Just keep
in mind the battery and network power your application will consume.

And if you have been looking around, you certainly want to deploy your application
on the iPhone! Apple's unique mobile phone cum iPod cum dual finger scrolling
machine. There are hundreds of applications already ported to iPhone—and
remember, iPhone only supports browser-based applications—and many other
developers are working on bringing out iPhone versions of their app.

Let's quickly look at what it takes to develop for the iPhone then!

Understanding iPhone Application
Development
There are quite a few distinct features of iPhone that make it an interesting target for
developing your AJAX applications. First, it's operated by a touch screen. Second, it's
possible to use two fingers at once! There are interesting scroll functions on flicking
your finger down the screen. To top it all, it includes an almost full-fledged Safari
browser, complete with scaling and zooming to fit any website onto the iPhone.

Apple provides a comprehensive guide for developers building applications
for iPhone. You can access the online documentation from http://developer.
apple.com/iphone/. You will have to register for a free online Apple Developer
Connection membership to access the documentation though.

Here are a few important points to keep in mind:

Make sure your content and application are standards compliant—XHTML,
CSS etc. If they are not, they may not display correctly.
Keep in mind the way users will interact with their fingers. As there is no
mouse, you don't have precision over where the user will tap. Keep large
buttons; don't keep too many links together, and ensure that you handle only
events that you want to.
The phone can rotate and Safari will auto-rotate the application. Make sure
it works well with that. You can also listen for rotation change events and
redraw the page if you wish.

•

•

•

Chapter 10

[199]

The default size of the available screen for the app is 320x396 pixels. But
develop for 480 pixels width; iPhone will scale it down.
Also note that testing in Safari on the desktop and testing on iPhone are
different. Don't assume something that works on Safari will work on
the iPhone.
There are no scrollbars and no windows. Whatever is the content size, iPhone
will fit it into its screen size by default.
The iPhone does not support Flash/Java/File Upload/Download. So don't
use them!
The iPhone has an onscreen keyboard. When the onscreen keyboard comes
up, the space available for your application will be less. Keep your input
fields limited, and together, so it's easier for the user to handle the keyboard.
You can use iPhoney (http://sourceforge.net/projects/
iphonesimulator/) to get an iPhone-like browser on your desktop to test
your applications.
Use iPhone features! Use an iPhone-like UI if you can! Joe Hewitt's iUI
(http://code.google.com/p/iui/) is a great library to build iPhone-like
interfaces with AJAX. The following screenshot shows a possible root-level
menu for POTR using iUI, running in iPhoney shell, rotated horizontally.

If you rely heavily on browser/mouse/key events in your application, be
prepared for a lot of surprises. iPhone does not consistently emit events. You
will have to figure out what works in your case and what does not.
You can use a toolkit like Dojo (http://www.dojotoolkit.org/) for AJAX
functions and effects. Many of the functionalities work out of the box, and
the developers are working hard to make the rest work.

•

•

•

•

•

•

•

•

•

Mobile AJAX

[200]

People have developed many tools to hack into iPhone. Try them out. They
will give you great understanding of how it works!
And yes, read the Apple documentation on iPhone development. This will
give you a kickstart. You can also go http://www.apple.com/webapps/ and
check out all the cool applications people have built so far. Go ahead, view
the source and learn from it!

If all this hasn't whet your appetite for iPhone application development. The iPhone
is a new genre of mobile device and a lot of future devices are going to be similar.
Building for the iPhone will prepare you to deal with those new devices.

If you find the AJAX way still too restrictive, you don't have any other options with
iPhone. But hey, iPhone is not the only device in the market. Not even the market
leader! There are so many other mobile devices that allow you to build rich mobile
applications using different technologies. Let's understand what these options are!

More Ways to Build Rich Mobile Apps
If you want to take advantage of the mobile device's operating system, you can create
applications using that device's Software Development Kit. Most platforms allow
you to use C or Java to create applications. If you want to deploy on a Windows
mobile, you can even use .NET languages. You can write business applications,
tools that take advantage of the devices' features—including accessing messages,
accessories, and files on the device. You can even develop games! Such applications
typically need to be downloaded and installed on the device before they can be used.

If you don't want to go too deep in C/Java/.NET, you can use Flash Lite to deploy
your application. You can build the UI in Flash, and use Flash ActionScript to
communicate to a server for retrieving data. Flash Lite also exposes some device
functionalities that you can use.

What's more important for building mobile applications is the focus on the user's
context. The technology choices will be easier once you clearly know who the target
user is and how she or he is going to use your application.

Let's come back to the Mobile Web! We even learned many things about mobile
AJAX development in this chapter. Let's revise what we saw.

•

•

Chapter 10

[201]

Summary
In this chapter, we learned to AJAX-enable our applications. Specifically:

Understanding why AJAX is relevant for mobile devices
Building an AJAX strategy for our application
Using HTML instead of XML to reduce client load
Using JavaScript and PHP to dynamically fetch recipes
Sending and retrieving data using AJAX
Understanding iPhone app development—tips and tools

We have learned a great deal about building mobile web applications so far. We have
also integrated messaging and voice support in our application. You are already a
master at building mobile web applications! So what's next for us? What's next for us
is what's next for everyone! Let's look at some trends and tools that promise to shape
the next few years of the mobile web in the next chapter!

•

•

•

•

•

•

Mobile Web 3.0?
It's a Tuesday evening. Luigi Mobeeli—owner of Pizza On The Run—is sitting
quietly in his balcony. Observing the evening city traffic, Luigi is a satisfied man.
What was a Mom-n-Pop corner shop for decades, has now transformed into a hot
favorite of geeks. Hundreds of orders come in through the mobile web, SMS, and the
IVR system. Luigi's children have taken up managing most of the business in their
vacation now, and the POTR team is all charged up.

A smile lights up Luigi's face as he thinks about what technology has done for him in
the last three months. From a simple catalog website, Pizza On The Run has gone to
mobile, then to SMS/MMS, and then to voice. The launch of the Hot Recipes section
was noticed not only by customers, but even by tech journals as a cool technology
implementation. Luigi was enthusiastic about technology, but never thought he
would come this far. He feels proud of his technical team! "Maybe I should sponsor
them a year's pizzas", he grinned.

Suddenly, the visionary businessman in Luigi wakes up! "We have done so well so
far, but what about the future? What is the future of the mobile web? What are the
latest trends and what can we expect to come up in the next few months?" Maybe it's
time to review the current trends and start thinking about future strategy. Time to
call in the experts!

Wednesday morning, Luigi calls us and shares his ideas. We know the target and are
excited to do the research. Let us look at following in this chapter:

Trends in mobile web applications
Mobile widgets and developments of the browser
Connectivity—mobile networks, occasionally connected devices
Open Handset Alliance and Google's Android system
Resources to keep abreast of the mobile scene

•

•

•

•

•

Mobile Web 3.0?

[204]

After we review these, we will list resources—websites, blogs, and mailing lists to
visit to stay up to date on the mobile web scene. Now, let's begin by looking at the
trends in mobile web applications!

Mobile Web Applications are Growing
Faster than Humans
Every major web application is being ported to mobile devices. Mobile-specific new
applications are being launched every day. The following screenshot shows listing of
Remember The Milk (www.rememberthemilk.com) on Apple's Webapps gallery—a
directory of web applications that run on the iPhone and iPod Touch, and the
screenshot after that shows Yahoo!'s mobile offerings.

Chapter 11

[205]

There are browser-based applications on the mobile to access email, RSS feeds,
and podcasts. You can keep track of your contacts and calendars from your mobile
browser. If you get bored, you can even play games! The number of native mobile
applications is high, but a lot more web applications are now coming to the mobile.
With more and more mobile browsers supporting XHTML, CSS, and AJAX, the job
of developers to port a web application to mobile devices has become easier. We
have learned the tricks of this trade throughout the book, and you too can build
compelling mobile web applications.

If you see the overall picture, trends are clear:

Port already popular web applications to mobile devices
Provide local content, make sure to take care of context
Use AJAX, XHTML, and CSS to deliver powerful applications

•

•

•

Mobile Web 3.0?

[206]

Use SMS to supplement your mobile web offering
Adapt design and content according to the device capabilities
Make it simple and take everything to mobile!

Apart from that, the Web 2.0 (and 3.0) philosophies are extended to mobile. The long
tail, web as a platform, user contributed content, importance of data, lightweight
development, perpetual beta, rich user interface, and software as service have
come to mobile now. Mashups and community are happening. We may goof up in
the terminology, but the core principles of Web 2.0 are very much relevant to the
mobile web.

And it is not just the browser that people are using to deliver mobile web
applications! Mobile widgets are showing up as a powerful way to bring the Web
to mobile devices.

Mobile Widgets and Mobile Browsers
Mobile widgets are single purpose applications. They do a particular task, are
normally based on web technologies, and can access device-specific features like
camera and phonebook. There are a few mobile widget platforms already, and more
are coming! There is little standardization between different platforms, but things
will settle in the near future. Opera is the major player for web widgets and Opera 9
has support for mobile widgets. Openwave also has a Mobile AJAX SDK that allows
building widgets. Apart from these, there are players who have built their own
platforms. WidSets (www.widsets.com) and Plusmo (www.plusmo.com) are popular
among such platforms. There are thousands of widgets available even today! The
following screenshot shows a list of featured widgets on WidSets from the 3000+ that
are available.

•

•

•

Chapter 11

[207]

Most platforms come with a good amount of documentation to get you started in
developing your own widgets. Opera has a collection of articles at http://dev.
opera.com/articles/widgets/ explaining widgets and how to develop them.

The Advantages of Mobile Widgets
The advantages widgets have are many-fold. First, they run just like other
applications on the device, not as something that needs a browser to launch. It's
much easier for the user to understand and interact with widgets. A widget can
access device resources that a web application cannot. A widget may even cache
some data, reducing the need for AJAX calls to retrieve data. Widgets can have
fancy user interfaces and cool animations. If this was not enough, the development
technology is the same—XHTML, CSS, and AJAX!

Imagine a currency conversion calculator. If you build a web application for it, the
user must be online to use it. But if it's a widget, once installed, it can be called up
even when the user is not connected to the Web. The widget can use cached data and
covert currencies on its own now.

While there are alternatives to run applications outside the browser, the browsers
themselves are getting intelligent. Let's see what we can expect in the future
mobile browsers.

Mobile Browsers Get Better
Today's latest mobile browsers are not much behind their desktop counterparts.
They can show standard web pages in a scaled down fashion, allow the user to zoom
in and pan, automatically change display if you rotate your device, support CSS and
AJAX, and can do an excellent job at showing you the Internet.

But it's still difficult to use a mobile browser. Even though some browsers support
opening multiple pages at once, it's difficult to navigate among them. The browser
can drain the battery, run too slow, and simply can't do what a native application
can do.

There are demands that browsers open up access to device capabilities to web
applications, and that they execute JavaScript without burning the battery. Mobile
browsers will get there. And that too quite soon!

Minimo is a mobile-specific browser from Firefox. Apple's iPhone uses Safari as its
browser. Opera's browsers are getting better everyday. And many manufacturers are
basing their browser implementations on WebKit (www.webkit.org)—making way
for a standard and powerful platform to serve the Internet to the user.

Mobile Web 3.0?

[208]

Do We Need Server-Side Adaptation?
If browsers are getting standardized, do we still need server-side adaptation? The
answer is: Yes! Even after standard compliance of browsers, we still have variations
in screen sizes, input methods, and network speeds to deal with. These can't be dealt
without adaptation at server level. Apart from the initiatives we have already talked
about in the book—like WURFL and CSS—there are other interesting approaches
coming up.

One such approach is W3C's DIAL—Device Independent Authoring Language.
DIAL (http://www.w3.org/TR/dial/) is a combination of XHTML 2, XForms,
and DISelect. The intention behind DIAL is to develop a language that will allow
consistent delivery across devices and contexts. The DIAL processor can be on the
server, at an intermediary, or on the client side. The language looks promising and
flexible. So keep track of it!

On the other hand, adaptation tools are getting better and "automatic adaptation"
may solve/resolve many of the issues. With increasing knowledge about the device
and standards compliance, an adaptation engine should be able to take care of
most of the customizations on its own—leaving the author to define rules for
content adaptation.

Many mobile devices now support multiple networks. For example, the iPhone
works over WiFi and EDGE. And it's almost transparent to the user. But imagine you
are viewing a streaming YouTube video over WiFi and then go out of it. Switching to
EDGE may happen automatically, but the video may crawl and stutter. How do you
handle that?

Connectivity—Mobile Networks and
Occasionally Connected Devices
If the device supports multiple wireless networks—Bluetooth, WiFi, WiMAX,
EDGE, 3G, GSM, CDMA, etc.—the operating system will handle connections and
disconnections. We can't handle them. The only thing we can do is to try to check the
connection speed/IP address on each request and adapt content if required.

Devices that support multiple networks are a good thing for users. Some devices
make a transition from one available network to another automatically. Some others
require manual selection. All these complications can affect the application in use
at that time. Consider that the user has selected all the pizzas and side dishes she or
he wants to order, and even entered her or his address. In the final order processing
step, the network changes. If we had code that will accept requests only from the
previous IP address, the user will have to start the whole process again. And if the

Chapter 11

[209]

user moved from a fast network to a slow one, and we showed large size images on
the order confirmation, it will be a pain for the user to wait for things to load.

As developers, we will have to learn and balance these things. User experience
matters and we have got to do everything to make it easier. Remember that many
mobile users will be non-geek. Most non-tech too! What matters to them is simply to
get the job done.

OK, you can handle network changes and make it easier for the users. But what if
the connection drops? We have been to places where even the phone network is not
available—the signal strength indicator showing zero bars instead of the full five.
What can we do in such a situation?

Nothing. We can't do much in such a situation. All we can do is keep a large enough
session timeout to handle small interruptions, but we can't handle total disconnects.
Or can we? What about the entire buzz around "Occasionally Connected Computing"?

Occasionally Connected Computing
Occasionally Connected Computing (OCC) is a term coined by Adobe while
referring to some of the Rich Internet Applications (RIA). These applications could
cache data to the client and function even when the Internet connection was not
present. We use the term in the same manner for mobile applications. OCC refers to
the kind of software architecture where an application can continue functioning with
or without a live Internet connection.

OCC requires a different way of thinking about software architecture. But the ability
to run an application without a live connection has tremendous impact on the future
of the mobile web. Network connectivity is costly, and users don't like to pay for
each byte they download. With the advent of multiple networks, a user might want
to do heavy uploads and downloads in a WiFi zone, and only minimal transactions
when on GPRS. If our application could provide this flexibility, there are good
chances it will be grabbed like sweet candy by the users.

So how can we achieve OCC on mobile devices? While some amount of caching has
always been part of mobile applications, OCC is a new thing for the mobile web.
As such, OCC is new even for web applications! The OCC poster-boy solution is
Google Gears (http://code.google.com/apis/gears/)—a browser extension that
provides an API to run applications offline, complete with a caching server, an offline
SQL database, and an asynchronous worker pool that lets you do the heavy lifting in
the background. Google Gears is certainly an innovation whose time has come.

Mobile Web 3.0?

[210]

The following figure shows the architecture of Google Gears (or other OCC models).

Application UI

Local Data
Access

Server Data
Access

Data Switch

Offline Database

Sync Engine Internet

Online Database

The Dojo Offline Toolkit (http://dojotoolkit.org/offline) is a special version of
Dojo Toolkit designed for OCC. Dojo Offline is based on Google Gears and provides
an easy-to-understand, higher-level access to Gears. It can automatically detect
network availability and store data in a lightweight hash table instead of SQL. Dojo
SQL allows querying stored data and returns them as easy-to-use JavaScript objects.
Dojo is also working on a mobile version of its toolkit, so Dojo Offline is something
to watch out for.

If Dojo is using Google Gears, there must be something good about it. The G
Company is eyeing the mobile market already and is ready to take it by storm, and it
plans to do this with thousands of Androids!

Chapter 11

[211]

Androids will Invade Your Mobile
Space Soon!
Android is the name of Google's mobile operating system and other key
software. Google, along with many others, has formed the Open Handset Alliance
(www.openhandsetalliance.com)—a group of mobile and technology leaders
who want to change the mobile experience for customers. The alliance has released
Android SDK, which is an open platform to build applications for mobile devices
using Java.

What's so special about Android and the Open Handset Alliance? As such, there
have been a number of similar initiatives in the past where groups launched a
Linux-based operating system and built tools around it. But there are reasons for
Android to be special and why it has the potential to invade our mobile space. Here
are a few:

It is an open-source platform. The license allows commercial use without the
need to give back the modifications.
It treats native and downloaded applications equally. This is unprecedented.
It means that if you don't like the phone book application that came with
your phone, you can download one that you like and replace it in. You can
customize any and everything about the phone—the way you like it.
Google has taken the native application route rather than the Mobile Web
route. You use Java to build applications for the platform. At the same time,
there is a capable browser included, and you can easily deploy Mobile Web
applications on Android.
You can also easily integrate various applications on the phone. It's possible
(and encouraged) to build applications that use the device capabilities as
well as use the Web to get data. You can build an application that uses the
location of the device and alerts you when your friends are nearby—right in
your phone book!
Unlike the past efforts, now there is a company with sufficient cash reserves
to make this initiative successful! That is a big plus!
And technologically, the platform has good potential!

•

•

•

•

•

•

Mobile Web 3.0?

[212]

The following screenshot shows a sample application running on the Android SDK.
If you want to build mobile web applications for Android (http://code.google.
com/android/), it won't be a big deal. Develop as usual, and just test it with Android
SDK. If it works, and most probably it will, you are well set!

Getting Inside the Android
You can use Eclipse to build Android applications and the overall system
architecture is quite interesting, especially, the way information is shared between
applications. As such, there are four building blocks to an Android application.

Activities are single-screen UIs. They contain the forms and visual elements,
and are implemented as one class per activity. Intents are similar to events,
but do a lot more. Moving from one activity (screen) to another is also done
via Intents. An IntentFilter decides what Intents an activity can handle.
IntentReceiver is a way for you to handle external events with your
application, for example to invoke your application when a new message
arrives or when a contact is edited.

•

•

Chapter 11

[213]

A Service is like a daemon, running in the background for longer periods.
Content Providers are data stores. Android comes with SQLite database, but
you can use and develop anything that adheres to the Content Provider API.

If you want to know more about Android, the online documentation is a great way
to start: http://code.google.com/android/. The mailing lists too carry a lot of
useful information.

Other Players
While Google and Apple give each other a run for their money, Microsoft is still
figuring out what it should do. Microsoft entered the mobile devices market early
on and holds a majority of the SmartPhone market. Google and Apple are looking at
not only SmartPhones but also standard Feature Phones. Apple has taken a "closed"
approach—guarding hardware, software, and even access to device capabilities.
Google has gone completely open, giving freedom to do whatever the user/
developer wants with the system. The other players—Nokia, Sony, Motorola, etc.
have investments in their own software stack, but may join the Google bandwagon
in some form or the other. That means Google will have tons of money coming in
from advertising on its mobile platform! That is the reason why it's doing all the
good work right now, isn't it?

Is the Mobile the Next Computer?
Looking at all the developments in the field and the predictions about proliferation
of mobile phones, one may feel that the mobile phone is the next computing device.
And that feeling is not far from the truth. A mobile phone is and will be a primary
computing device for many consumers. By the numbers, the mobile phone is the
most successful consumer device today—ahead of TV and computers. For the
majority of consumers, a mobile phone is the most high tech device they own. With
the amount of features and processing power cramped into these tiny shells, mobile
devices have already become more powerful than computers of a few years ago.

What this means is that there is a huge market to be tapped. The sheer size of the
market means a success can take you leaps and bounds. User interaction design is
going to be vital for success and a developer must do everything possible to give an
easy and smooth experience to the user. It's a challenge to deal with the variety of
devices and platforms in the mobile space, but once you have handled the challenge
a couple of times, you are equipped to conquer the world!

•

•

Mobile Web 3.0?

[214]

How will People Use Their Mobile Computer?
If the mobile phone is going to be the computing devices for many, what use are
they going to put it to? This will depend on the kind of applications that will come
out. But once the basic needs of phone and communication are taken care of, the
customers want entertainment and productivity. They want to carry out business
tasks on the device or download ringtones and wallpapers. Entertainment keeps
an upper hand these days, with millions of dollars transacted every day buying
wallpapers, theme, ringtones, and games!

Innovative applications will always find their place. And Mobile Web apps are
creating a niche for themselves already. Expect people to use high-end mobile
devices as their primary computing devices! Expect people to use all mobile devices
as one of their major entertainment devices as well!

Mobile is Not Limited to Phones
We have always maintained that mobile devices are not limited to mobile phones.
They will include browsers embedded in automobiles, entertainment devices, and
gaming consoles! As a matter of fact, many people are hacking Playstation, Wii, and
Xbox and running applications on them. Devices like this are where the real magic of
the mobile web starts to appear. Imagine ordering your favorite pizza while you are
playing beach volleyball with your friends over neighborhood Wi-Fi. All from the
gaming console—just pop open the browser, visit Pizza On The Run, and place your
order. Luigi's man will be there within half an hour with delicious pizzas!

And while we are at it, here is some more noteworthy analysis.

Some More Analysis!
We have reviewed the trends and developments in the mobile web and the mobile
browsers. Let us look at some other noteworthy analysis and predictions!

Location-Based Services will Mushroom
Increasing numbers of mobile devices are aware of the location now. They can detect
the longitude and latitude they are at. This information can then be embedded
in a photo taken via geo tags or can be used to retrieve location-based service
information. If you are passing by a movie theatre, you may just get a special offer
on the movies. Or you can navigate a map through your mobile device itself, without
the need to fit a GPS system in your car.

Chapter 11

[215]

Location-based services like this will mushroom in the coming months. Intelligent
use of location information will find user acceptance, the rest will die!

SMS Messaging will Continue Its Hold
More and more service providers realize the benefit of using SMS for notifications
and promotions. Mobile networks are full of SMS messages flying around, and this
is not going to end. It's becoming easier to integrate SMS-based services—including
two-way messaging—and more applications will use SMS in the coming days. Use of
MMS will be limited, but SMS will even be used for quizzes, polls, and entertainment.

Mobile Payments will Happen, Albeit Slowly
The mobile commerce and mobile payment industry is still struggling with
standards. There are already innovative solutions available—and we saw them in
the mobile payments chapter. But it's still some time before mobile payments become
mainstream. Person-to-Person and Near-Field communication payments will happen
sooner than others. Micro-payments that show up on your bill will have wider
acceptance as well.

You will Build Some Kickass Mobile Web
Applications
This one is a no brainer. You now know enough to build a mobile web application
that integrates with messaging and voice. We have also tried mobile payments and
mobile AJAX. You are now equipped to build the next killer mobile web app! All it
will take is the focus on users. What works is the application of technology, not the
technology itself.

And if you are looking for some additional help, here are are few resources that can
support you.

Resources for Mobile Web Integration
Here are a few online resources that will help you keep up to date on mobile
web integration:

W3C's Planet Mobile Web: http://www.w3.org/Mobile/planet, a collection
of the most influential blogs on mobile
dot Mobi's Developer Resources: http://www.dev.mobi

•

•

Mobile Web 3.0?

[216]

WAP Tutorials on Developers’ Home: http://www.developershome.com/
Openwave Developer Resources: http://developer.openwave.com/
W3C's Mobile Web Initiative: http://www.w3.org/Mobile/
WURFL / WALL etc.: http://wurfl.sourceforge.net/

This list is very small, and there are many other sources from which you can learned
more about a particular thing in mobile web integration. We have mentioned the
links of relevant online resources in each chapter and you should visit them. If you
are looking for particular information, doing a quick Google search too will find you
good resources!

This is the end of our research on the trends in the mobile web. Let's revise what we
did in this chapter!

Summary
This is the last chapter in the book. Over the last ten chapters, we have learned a lot
about developing for the mobile web. We learned about XHTML, WCSS, Adaptation,
Best Practices, Messaging, Mobile Payment, and Mobile AJAX. This was our take to
peek at what lies ahead in the mobile web. We specifically looked at:

Mobile web applications are growing: every successful web application is
being ported to mobile.
Mobile widgets are the next big thing.
Mobile browsers are evolving rapidly and will make it easier to develop
mobile web applications.
Mobile networks are complex! And can drop anytime.
We can implement Occasionally Connected Computing architecture using
Google Gears and Dojo Offline.
Google and Open Handset Alliance are pushing Android.
SMS and entertainment will continue to dominate.
For many, mobile devices will be their only computing platform.

There is a big scope for developing innovative mobile web applications. Applications
that integrate messaging, voice, payment, and OCC with the Mobile Web have an
even greater chance of making it big. The mobile usage will continue to grow for the
next few years. Simple ideas that effectively solve a specific problem of mobile users
will be very successful—worldwide!

We have submitted our findings to Luigi. He was in deep thought after reading the
report. We don't know what will be his next idea, but till that time let's get
some pizzas!

•
•
•
•

•

•
•

•
•

•
•
•

Index
A
adaptation

<wall:*> tags 77
about 73
device, detecting 80
device capabilities 80
device characteristics 81
images, resizing 82
mobile blog, making 82
need for 74

adaptation tools
GAIA Image Transcoder 82
HAWHAW 84
Image Server 82
Mobile Web Toolkit 83
MyMobileWeb 83
Tera WURLF 81

AJAX
advantage 183
Frost AJAX library 183

AJAX application
AJAX XMLHttpRequest 188
comments, submitting 194-196
form processing 197
JavaScript function, adding 189
navigation, adding for recipes 193, 194
PHP file, creating 185
RecipeComment class, creating 185
recipes page, implementing 184-191

C
checklists, mobile web development

caching 93
content 92
design and CSS 91

images 92
links 92
markup 93
navigation 92
objects 93
security 93
setup, testing 90
strategy 90
structure and page information 91
user input 93

components, SMS-based payments
receiving messages 151
short code 151

CSS
about 24
ways to apply in XHTML MP page 47

D
data tracking process, mobile web

development
device data, tapping into 97
feedback page , creating 97
problem areas, covering 97

DeviceAnywhere service 35

F
Frost mobile AJAX library

about 186
frost.js 186

I
iPhone application development

about 198
tools 199

[218]

IVR application
Caller ID 171
CCXML 158
complex grammar rules 174-176
complex grammar rules, implementing 176
creating 162, 163
developing 157
DTMF 159
errors, handling 167, 169
global navigation, adding with <link> tag

169
grXML 158
infrastructure 159
jargon 158
keypad inputs, accepting 164, 166
order details, confirming 177, 178
order details, submitting 177-179
platform, setting up 159
SIP 159
speech, recognizing 169
speech recognition 159
TTS 159
VoiceXML(VXML) 158
VoIP 159
VXML pages , generating 179
working 163, 166, 167

L
layouts, POTR mobile site

colors 45
CSS, defining 48, 49
CSS, testing in different browsers 49, 51
designing 44
images 45
mobile screen sizes 44, 45
mobile specific version 45
mobile web layouts 46
page sizes 45
web layouts 46
Wireless CSS, using 47

M
message delivery status, POTR mobile site

message status, querying for 112
message status updates, callbacks used 112
queued messages, tracking 110, 111

methods, mobile web development
CSS-based design 26, 27
CSS-based design, wireless CSS 27
do nothing 25
formatting, removing 25, 26
mobile site 27, 28
website rendering by mobile browser 25

MMS
about 127
benefits 136
Clickatell gateway 131
decoding process 134, 136
delivering process 132, 133
message presentation, controlling 127
multipart messages 125
multipart messages, constructing 126
photos, receiving 134
previewing, Content Authoring SDK used

123
sending, through Clickatell 131, 132
sending, through gateway 131
sending process 132
structure 124

mobile AJAX
about 181, 198
AJAX strategy, building 182, 183

mobile checkout methods, POTR
DoMobileCheckoutPayment 140, 141
SetMobileCheckout 140, 141

mobile data usage
about 14
increasing 14
varying, around the world 14, 15

mobile devices
about 11
limitations 18
mobile phones 11, 12
PDAs 13
usage, for data communications 13

Mobile Messaging Jargon File box 110
mobile navigation

about 28
mobile site, structuring tips 31
mobile site structure 30
mobile site structure, planning 29

mobile payment methods
credit card payment 147

[219]

credit card payment, pros and cons 147,
148

direct billing 148
direct billing, pros and cons 148
evaluating 146
premium SMS 146
premium SMS, pros and cons 147
proximity payment 148
proximity payment, pros and cons 148

mobile payment system
mobile payment gateways 154
mobile payment methods, evaluating 146
money, getting through Paypal 139
Paypal account, configuring 140
SMS-based payments 150

mobile usability 15-17
mobile web

about 10
advantages 18
integrating, with mobile features 10, 11
integration 10

mobile web applications
building ways 200
developing 23
iPhone application development 198
trends 204, 205, 206

mobile web development
about 23
adaptation 20, 73
adapting options 75
Androids 211
Androids, features 211, 212
Androids architecture 212
best practices 90, 93
checklists 90
data tracking process 97
device features, comparing 74
device features, finding 74
environment, setting up 31
LCD 20, 21
Least Common Denominator,

determining 74
Least Common Denominator method 74
methods 24
mobile AJAX 181
mobile browsers 207
mobile browsers, predictions 214

mobile navigation 28
mobile networks 208
mobile phone, features 213
mobile site, hosting 35
mobile site, information architecture 28
mobile web, predictions 214
mobile web applications, trends 204
mobile web integration, resources 215
mobile widgets 206
mobile widgets, advantages 207
network connectivity 208
recommendations 90
server side adaptation, need for 208
user behavior data, collecting 94
user tracking, implementing 94, 96
WAP 19
ways 19
website, simplifying 25

N
network connectivity, mobile web

development
about 208
Occasionally Connected Computing

(OCC) 209
OCC, Dojo Offline Toolkit 210

P
Paypal

about 139
features 140
mobile checkout methods 140

POTR mobile site
about 23, 24
adaptation, implementing 76-78
backend, building 51
building 43
bulk messages, sending 115, 116
classes 51
code architecture, creating 51
database, creating 51
database schema 52
DeviceAnywhere service 192, 193
form, processing 58, 59
form elements, rendering 56, 58
framework, coding 53

[220]

guidelines, for selecting third party
gateway 113, 114

homepage 35, 37
homepage, document structure 37
homepage, redoing 54-56
IVR application, creating 162
layouts, designing 44
message delivery status 110
mobile checkout methods 141
mobile friendly ordering process,

implementing 66, 68
mobile payment system 139
ordering process 61-64
Paypal, working 145
paypal.lib.php, structure 142
Paypal Mobile Checkout, integrating 139
Paypal Mobile Checkout, integrating with

141-144
pizza selection page, adding images 76
pizza selection page, rebuilding on

POTR 76
recipes, fetching via AJAX 182
sessions, handling 59, 60
SMS gateway, setting up 114, 115
user input, constraining with WCSS 64, 66
user login 59, 60
voice applications 157, 161
voice applications, principles 161
WCSS, marquee animations 69

R
ready.mobi test

additional tests 89
running on site 85
testing on POTR 86-88
working 88

S
SMIL

about 126, 127
elements 128
modules and elements 128
slide, creating 130

SMS
delivering from website to mobile device

through MSC 109

SMS-based payments
about 150
aspects 150
components 151
messages, receiving via Clickatell 152
short code, getting 151
text messages, receiving 151
two way messaging 153

speech recognition, IVR application
grammar, creating 170
variables, creating 170

standards compliant sites
developing 85

Synchronized Multimedia Integration
Language. See SMIL

V
Voxeo Prophecy Server

about 159
setting up 159, 161

VXML
about 58
data, processing with JavaScript 176

W
W3C DIAL 82
WALL

about 77
features 78
WML, generating 80
XHTML tags 79

WAP 19
Wireless Abstraction Library. See WALL
Wireless CSS 47
WML 80
WML features 41
WURFL 80

X
XHTML MP

about 20
fundamentals 38
supported elements 40
syntactical rules 38

	Mobile Web Development
	Table of Contents
	Preface
	Chapter 1: Getting Mobile
	What is Mobile Web?
	Mobile Web Integration is Connecting the Two!

	The First Step—Understanding Mobile Devices
	Mobile Phones
	PDAs
	Other Devices

	Mobile Data Usage is Exploding
	Mobile Usage Around the World is Not the Same

	Mobiles and Desktops
	People Use Their Mobiles Differently Than Their Desktops
	How Would You Do This Using Your Mobile?

	It's Not All Rosy—Mobile Devices have Limitations
	Advantages of Mobile Web

	But There are Many Ways to Do Mobile Web Development!
	What About WAP?

	Bringing Order with Standards and Guidelines
	Adaptation is Better, but LCD is Easier

	Summary

	Chapter 2: Starting Your Mobile Site
	Pizza On The Run and the Mobile Web
	Different Options for Going Mobile
	Do Nothing
	When to Use This Approach
	When to Avoid This Approach

	Remove Formatting
	When to Use This Approach
	When to Avoid This Approach

	CSS-Based Design
	When to Use This Approach
	When to Avoid This Approach

	Mobile Site
	When to Use This Approach
	When to Avoid This Approach

	Mobile Navigation and Information Architecture
	Step-By-Step: Planning the Structure of Your Mobile Site
	Handy Tips in Structuring Your Mobile Site

	Setting Up the Development Environment
	Hosting Your Mobile Site is Trivial

	POTR Mobile Homepage
	Making a Call is as Simple as Email
	Understanding the Homepage
	Document Structure

	Fundamentals of XHTML MP
	Before Writing Further Code, Let's Learn Some Grammar
	Most Common HTML Elements are Supported
	XHTML MP Does Not Support Many WML Features

	Summary

	Chapter 3: Building Pizza On The Run
	Luigi's Pizza On The Run
	Designing Layouts for the Mobile Web
	Mobile Screen Sizes
	Colors, Images, Page Sizes, and More
	To Mobile or Not to Mobile?
	Web Layouts Don't Work on Mobile Devices

	Using Wireless CSS as the Silver Bullet, Almost!
	Creating the Database and Code Architecture for POTR
	Classes for POTR
	Database Schema
	Coding Framework

	Redoing the POTR Homepage
	Form Elements Don't Look the Same Across Browsers
	Form Processing Does not Change!
	Handling Sessions and User Login

	Taking Orders
	Constraining User Input with WCSS
	Single-Step Registration and Order Placement on POTR
	Special Effects with CSS
	Luigi's Pizza On The Run is Live!
	Summary

	Chapter 4: Adapting to User Devices
	What is Adaptation?
	Do I Need Adaptation?
	Can't I just Use Common Capabilities and Ignore the Rest?
	How to Determine the LCD?
	OK, So How do I Adapt?

	Fancy Pizza Selection
	What are Those <wall:*> Tags?
	Let's Make Sense of This Code!
	Can I Use All XHTML Tags?
	Will This Work Well for WML?

	Device Detection and Capabilities
	XML Processing can Bog Down My Server, is There Something Easier?
	What About W3C's DIAL?

	Other Useful Tools for Adaptation
	Dynamically Resizing Images
	Quick and Easy Way to Make Your Blog Mobile
	MyMobileWeb: Going the Semantic Way
	HAWHAW: As Simple as a Laugh?

	Summary

	Chapter 5: Developing Standards- Compliant Sites
	Running the ready.mobi Test
	Time for Action: Test Your Site's Mobile Readiness with the ready.mobi Test

	Creating the Structure, Design, Markup, and Navigation for Best User Experience
	Mobile Web Development Checklists
	Strategy
	Testing Setup
	Structure and Page Information
	Design and CSS
	Images
	Navigation and Links
	Content
	Markup
	User Input
	Objects, Security, Caching, Etc.

	Best Practices should be Upgraded!
	Most Good Styles of Design and Software will Work on the Mobile Web Too

	Collecting User Behavior Data
	Time for Action: Implementing User Tracking
	How is All the Data Tracked?
	Covering Problem Areas
	Tapping into the Device Data
	Making it Easier to Ask for Help

	Summary

	Chapter 6: Sending Text Messages
	Updating Order Status
	Time for Action: Updating Order Status

	Sending SMS Notifications
	Getting Started with a Gateway
	Time for Action: Registering on Clickatell

	Integrating with Clickatell
	Time for Action: Integrating with Clickatell to Send SMS Notifications
	What Just Happened?

	So What Happens at the Gateway?
	Finding Message Delivery Status
	Time for Action: Tracking Queued Messages
	Querying for Message Status
	Lessen the Load with Status Update Callbacks

	Before You Decide on a Gateway
	Sending SMS from Your Own Computer
	Sending Bulk Messages
	Summary

	Chapter 7: Adding Spice to Messages: MMS
	Creating a "Special Offers" MMS message
	Time for Action: Compose an MMS message using Nokia Tools
	What Just Happened: Understanding MMS Structure

	Controlling Message Presentation
	Understanding SMIL Elements
	Modules and Elements of SMIL 2.1 Mobile Profile

	More SMIL: Applying Transitions

	Sending Multimedia Messages through Our Gateway
	Time for Action: Sending MMS Messages via Clickatell
	How is an MMS Message Sent?
	MMS Gateways do Good Work

	Receiving Photos from Customers via MMS
	Time for Action: Decoding an MMS Message
	What Just Happened: Decoding the MMS Message

	MMS's Potential is Yet to Be Exploited!
	Summary

	Chapter 8: Making Money via Mobile Devices
	Getting Money through PayPal
	Time for Action: Setting Up the PayPal Account for Mobile Payments
	Why This Configuration?

	Mobile Checkout is a Three-Step Flow
	Time for Action: Integrating PayPal Mobile Checkout with POTR
	How Does This Work?

	Evaluating Mobile Payment Methods
	Premium SMS
	WAP-Based Credit Card Payment
	Direct Billing
	Proximity Payment

	Security Concerns in Mobile Payments

	Using SMS in Mobile Payment
	Receiving Text Messages
	Getting a Short Code
	Receiving Messages via Clickatell
	Sending Messages That Can Be Replied To

	Making it Easier—Payment Gateways Help get More Money!
	Summary

	Chapter 9: Interactive Voice
	First, Some Basics
	Busting Some Jargon
	IVR Infrastructure: Hosted or Owned?
	Time for Action: Setting Up an Interactive Voice Response Platform

	Designing the Call Flow of Our Application
	Creating an Application to Play Audio
	Time for Action: Creating an Application and Welcoming Callers

	Making Choices by Key Presses
	Time for Action: Prompting the User for Next Action
	Transferring Calls in Voice XML

	Handling Errors
	Adding Global Navigation with the <link> Tag

	Recognizing Voice
	Storing Variables at the Application Level
	Detecting the Caller's Phone Number
	Time for Action: Let's Put It All Together

	Writing Complex Grammar Rules
	Time for Action: Writing Complex Grammars

	Selecting the Topping and Quantity
	Confirming and Submitting an Order
	Time for Action: Confirming and Submitting an Order
	How Did It Turn It All Around?

	Summary

	Chapter 10: Mobile AJAX
	Getting Pizza Recipes via AJAX
	Devising our AJAX Strategy
	Time for Action: Showing Recipes
	What's Going on in the Background?
	What if Your Device Does Not Support AJAX?

	Adding Navigation
	Time for Action: Adding Navigation for Recipes

	Adding Comments
	Time for Action: Submitting Comments
	What's the Deal with All that Form Code?

	I Want More AJAX on My Mobile!

	Understanding iPhone Application Development
	More Ways to Build Rich Mobile Apps
	Summary

	Chapter 11: Mobile Web 3.0?
	Mobile Web Applications are Growing Faster than Humans
	Mobile Widgets and Mobile Browsers
	The Advantages of Mobile Widgets
	Mobile Browsers Get Better
	Do We Need Server-Side Adaptation?

	Connectivity—Mobile Networks and Occasionally Connected Devices
	Occasionally Connected Computing

	Androids will Invade Your Mobile Space Soon!
	Getting Inside the Android
	Other Players

	Is the Mobile the Next Computer?
	How will People Use Their Mobile Computer?
	Mobile is Not Limited to Phones

	Some More Analysis!
	Location-Based Services will Mushroom
	SMS Messaging will Continue Its Hold
	Mobile Payments will Happen, Albeit Slowly
	You will Build Some Kickass Mobile Web Applications

	Resources for Mobile Web Integration
	Summary

	Index

